Sommaire
Littérature scientifique sur le sujet « Glycoside de flavanone amers »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Glycoside de flavanone amers ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Glycoside de flavanone amers"
Lewinsohn, Efraim, Lothar Britsch, Yehuda Mazur et Jonathan Gressel. « Flavanone Glycoside Biosynthesis in Citrus ». Plant Physiology 91, no 4 (1 décembre 1989) : 1323–28. http://dx.doi.org/10.1104/pp.91.4.1323.
Texte intégralAquino, Rita, M. Letizia Ciavatta, Francesco De Simone et Cosimo Pizza. « A flavanone glycoside from Hamelia patens ». Phytochemistry 29, no 7 (janvier 1990) : 2359–60. http://dx.doi.org/10.1016/0031-9422(90)83076-d.
Texte intégralTakahashi, Hironobu, Sachiyo Hirata, Hiroyuki Minami et Yoshiyasu Fukuyama. « Triterpene and flavanone glycoside from Rhododendron simsii ». Phytochemistry 56, no 8 (avril 2001) : 875–79. http://dx.doi.org/10.1016/s0031-9422(00)00493-3.
Texte intégralIntekhab, Javed, Mohammad Aslam, Vivek Bhadauria et Preeti Singh. « A new flavanone glycoside from Clausena pentaphylla ». Chemistry of Natural Compounds 48, no 4 (septembre 2012) : 568–69. http://dx.doi.org/10.1007/s10600-012-0312-3.
Texte intégralChen, R. C., G. B. Sun, J. Wang, H. J. Zhang et X. B. Sun. « Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway ». Food & ; Function 6, no 4 (2015) : 1331–44. http://dx.doi.org/10.1039/c4fo01164c.
Texte intégralJangwan, J. S., et R. P. Bahuguna. « Puddumin-B, a New Flavanone Glycoside fromPrunus cerasoides ». International Journal of Crude Drug Research 27, no 4 (janvier 1989) : 223–26. http://dx.doi.org/10.3109/13880208909116906.
Texte intégralZou, Wei, Yonggang Wang, Haibin Liu, Yulong Luo, Si Chen et Weiwei Su. « Melitidin : A Flavanone Glycoside from Citrus grandis ‘Tomentosa’ ». Natural Product Communications 8, no 4 (avril 2013) : 1934578X1300800. http://dx.doi.org/10.1177/1934578x1300800411.
Texte intégralDiao, Shengbao, Mei Jin, Chun Shi Jin, Cheng-Xi Wei, Jinfeng Sun, Wei Zhou et Gao Li. « A new flavanone glycoside isolated from Tournefortia sibirica ». Natural Product Research 33, no 20 (22 décembre 2018) : 3021–24. http://dx.doi.org/10.1080/14786419.2018.1512995.
Texte intégralChen, Yu-Jie, Guo-Yong Xie, Guang-Kai Xu, Yi-Qun Dai, Lu Shi et Min-Jian Qin. « Chemical Constituents of Pyrrosia calvata ». Natural Product Communications 10, no 7 (juillet 2015) : 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000714.
Texte intégralOkwu, D. E., et F. N. I. Morah. « Isolation and Characterization of Flavanone Glycoside 4I,5, 7-Trihydroxy Flavanone Rhamnoglucose from Garcinia kola Seed ». Journal of Applied Sciences 7, no 2 (1 janvier 2007) : 306–9. http://dx.doi.org/10.3923/jas.2007.306.309.
Texte intégralThèses sur le sujet "Glycoside de flavanone amers"
Ben, Zid Malek. « Etude de la déshydratation osmotique pour la formulation et la stabilisation d’écorces de bigarades (Citrus aurantium) ». Electronic Thesis or Diss., Montpellier, SupAgro, 2016. http://www.theses.fr/2016NSAM0007.
Texte intégralThe main objective of this study is to modulate the excessive bitterness of bitter orange peels using the technique of osmotic dehydration. The examined treatments are the dehydration-impregnation by soaking in sucrose solutions (DII) (60 ° Brix -50 ° C, 60 ° Brix- 25 ° C, 40 ° Brix- 25 ° C, 6h) and the dry osmotic dehydration (DS) (granulated sucrose -25 ° C, 6 h). Two blanching methods are also investigated in order to improve the performance of the osmotic dehydration: steam blanching (100 ° C, 5 min) and water blanching (85 ° C-60 min and 95 ° C-10 min). The blanching-osmotic dehydration combined treatments are VDII, EDII, VDS, EDS where V: (steam blanching - 5 min), E: (water blanching at 95 ° C - 6 min ), DII: (25 ° C-60 ° Brix- 4h) and DS (25 ° C granulated sucrose -4h). The study of the mass transfers including bitter compounds is based on a kinetic approach. The quantitative analysis of these compounds is carried out with high-performance liquid chromatography. Microscopic examination of blanched and osmotically dehydrated peels was performed to evaluate their porosity. The sensory profile of peels obtained by different osmotic treatments (DS, VDS, EDS, DII, VDII, EDII) was established in order to distinguish the differences between products and to control the effectiveness of each treatment on bitterness modulation. The main bitter flavanone glycosides identified in the peels are neoeriocitrin, naringin, and neohesperidin with predominance of the last two compounds. The high porosity of the peels (0.43 (0.06)) promotes the imbibition of external liquid during water blanching and during DII in low concentrated solutions (40 ° Brix). This phenomenon was also observed during the first hour of the DII in high sugar concentrated solutions (60° Brix). Significant losses of bitter compounds are noted during water blanching and also during osmotic treatments. This interesting result shows that the osmotic dehydration could modulate the bitterness of the peels either by promoting sugar uptake or flavanones glycosides loss. However, the DIi elicited higher loss of bitter compounds than DS. By contrast, the steam blanching showed good retention of bitter compounds. Both blanching methods accelerate and increase water loss. However, only water blanching increases sugar gains during DII and DS treatments. Losses of bitter compounds are increased either by steam or blanching water, but the latter gave rise to much higher losses than the former. The results of sensory evaluation showed significant differences between the products. Coupling water blanching to either DS or DII treatments yielded to high sweetened peels with low bitter taste intensity. These products are the most appreciated ones