Sommaire
Littérature scientifique sur le sujet « Golgipathie »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Golgipathie ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Golgipathie"
Rasika, Sowmyalakshmi, Sandrine Passemard, Alain Verloes, Pierre Gressens et Vincent El Ghouzzi. « Golgipathies in Neurodevelopment : A New View of Old Defects ». Developmental Neuroscience 40, no 5-6 (2018) : 396–416. http://dx.doi.org/10.1159/000497035.
Texte intégralPassemard, Sandrine, Franck Perez, Emilie Colin-Lemesre, Sowmyalakshmi Rasika, Pierre Gressens et Vincent El Ghouzzi. « Golgi trafficking defects in postnatal microcephaly : The evidence for “Golgipathies” ». Progress in Neurobiology 153 (juin 2017) : 46–63. http://dx.doi.org/10.1016/j.pneurobio.2017.03.007.
Texte intégralLebon, Sophie, Arnaud Bruneel, Séverine Drunat, Alexandra Albert, Zsolt Csaba, Monique Elmaleh, Alexandra Ntorkou et al. « A biallelic variant inGORASP1causes a novel Golgipathy with glycosylation and mitotic defects ». Life Science Alliance 8, no 4 (11 février 2025) : e202403065. https://doi.org/10.26508/lsa.202403065.
Texte intégralDiaz, Jorge, Xavier Gérard, Michel-Boris Emerit, Julie Areias, David Geny, Julie Dégardin, Manuel Simonutti et al. « YIF1B mutations cause a post-natal neurodevelopmental syndrome associated with Golgi and primary cilium alterations ». Brain 143, no 10 (1 octobre 2020) : 2911–28. http://dx.doi.org/10.1093/brain/awaa235.
Texte intégralEl Ghouzzi, Vincent, et Gaelle Boncompain. « Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development ». Nature Communications 13, no 1 (1 décembre 2022). http://dx.doi.org/10.1038/s41467-022-35101-y.
Texte intégralAkalın, Akçahan, Ercan Ayaz, Merve Soğukpınar, Enise Avcı‐Durmuşalioğlu, Gizem Ürel‐Demir, Adalet Elçin Yıldız, Tahir Atik, Nursel H. Elcioglu, Gulen Eda Utine et Pelin Özlem Şimşek‐Kiper. « Further defining the molecular spectrum and long‐term follow‐up of 17 patients with Dyggve–Melchior–Clausen and Smith–McCort dysplasia type 2 ». American Journal of Medical Genetics Part A, 11 juin 2024. http://dx.doi.org/10.1002/ajmg.a.63785.
Texte intégraldos Santos Henrique, Suelen, Mariana Jordão França, Rui Carlos Silva Junior, Mara Lúcia Schmitz Ferreira Santos et Daniel Almeida do Valle. « Neurodevelopmental disorder associated with gene ARF3 : A case report ». American Journal of Medical Genetics Part A, 7 mai 2024. http://dx.doi.org/10.1002/ajmg.a.63658.
Texte intégralJustel, Maria, Cristina Jou, Andrea Sariego-Jamardo, Natalia Alexandra Juliá-Palacios, Carlos Ortez, Maria Luisa Poch, Antonio Hedrera-Fernandez et al. « Expanding the phenotypic spectrum ofTRAPPC11-related muscular dystrophy : 25 Roma individuals carrying a founder variant ». Journal of Medical Genetics, 16 mai 2023, jmg—2022–109132. http://dx.doi.org/10.1136/jmg-2022-109132.
Texte intégralVarshney, Kruti, Sanjeeva Ghanti Narayanachar, Katta M. Girisha, Gandham SriLakshmi Bhavani, Dhanyalakshmi Narayanan, Shubha Phadke, Sheela Nampoothiri et al. « Clinical, radiological and molecular studies in 24 individuals with Dyggve-Melchior-Clausen dysplasia and Smith-McCort dysplasia from India ». Journal of Medical Genetics, 27 avril 2022, jmedgenet—2021–108098. http://dx.doi.org/10.1136/jmedgenet-2021-108098.
Texte intégralThèses sur le sujet "Golgipathie"
Lebon, Sophie. « Implication de la DYMECLINE et de GRASP65 dans les golgipathies neurodéveloppementales ». Electronic Thesis or Diss., Université Paris Cité, 2024. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=5768&f=73915.
Texte intégralMy PhD focuses on the study of two recessive genetic diseases that affect postnatal brain development and result from variants in genes involving the Golgi apparatus. The first disease studied, Dyggve-Melchior-Clausen syndrome (DMC), led in 2003 to the involvement of the first Golgi protein, DYMECLIN, in postnatal microcephaly, and subsequently to the concept of neurodevelopmental Golgipathies. In DMC, neurodevelopmental impairments are associated with intellectual disability and specific skeletal defects, of postnatal onset as well (spondylo-epi-metaphyseal dysplasia) and result from a deficiency in the DYM gene encoding DYMECLIN, this absence of which induces a defect in anterograde transport between the endoplasmic reticulum and the Golgi apparatus, notably in neurons. Smith McCort dysplasia (SMC), a clinical variant of DMC without microcephaly or intellectual deficiency, but with identical skeletal features, can result either from less deleterious variants of the DYM gene (SMC1) or from variants of the gene encoding the RAB-GTPase RAB33B (SMC2), suggesting a relationship between the two proteins. In this work, I have shown that these two proteins co-localize at the cis-Golgi, interact physically, that DYMECLIN is recruited to the Golgi by RAB33B and is involved in the control of autophagy in non-neuronal cells. However, in Dym-deficient neurons, the two proteins are weakly co-localized and autophagy is not disrupted, but defects in retrograde transport from the plasma membrane to the Golgi have been identified, associated with abnormalities in dendritic growth and defects in synaptic maturation. The second part of my thesis concerns the identification of a biallelic variant in the GORASP1 gene in a patient with a new neurodevelopmental syndrome characterized by white matter, neurosensory, neuromuscular and skeletal abnormalities. GORASP1 encodes the Golgi protein GRASP65, known for its role in Golgi structure, protein glycosylation and control of mitosis entry. Despite these apparently essential and ubiquitous functions, the gene has not been implicated in any human pathology so far. Using both patient's fibroblasts and RPE cells in which I introduced by CRISPR/Cas9 a mutation mimicking the patient's variant, I showed that the GRASP65 protein is no longer present in mutated cells, and identified glycosylation and mitosis defects in these cells. However, these defects do not prevent RPE cells from proliferating normally. Studying another mutant generated incidentally in RPE cells, which turned out to produce a C-terminally truncated but stable protein, I observed a more severe cell growth phenotype than when the protein is totally absent, suggesting dominant negative effects of the truncated protein. In contrast, this stable mutant showed no glycosylation defects. This study implicates GRASP65 in a neurodevelopmental disease and suggests that a total absence of the protein is sometimes less deleterious than a stable truncated protein