Sommaire
Littérature scientifique sur le sujet « GPATCH11 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « GPATCH11 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "GPATCH11"
Benbarche, Salima, Jose Maria Bello Pineda, Laura Baquero Galvis, Bo Liu, Jeetayu Biswas, Eric Wang, K. Ashley Lyttle et al. « Synthetic Introns Identify the Novel RNA Splicing Factor GPATCH8 As Required for Mis-Splicing Induced By SF3B1 Mutations ». Blood 142, Supplement 1 (28 novembre 2023) : 3. http://dx.doi.org/10.1182/blood-2023-179848.
Texte intégralStern, Edward P., Sandra G. Guerra, Harry Chinque, Vanessa Acquaah, David González-Serna, Markella Ponticos, Javier Martin et al. « Analysis of Anti-RNA Polymerase III Antibody-positive Systemic Sclerosis and Altered GPATCH2L and CTNND2 Expression in Scleroderma Renal Crisis ». Journal of Rheumatology 47, no 11 (15 mars 2020) : 1668–77. http://dx.doi.org/10.3899/jrheum.190945.
Texte intégralChapman, Ria M., Caroline L. Tinsley, Matthew J. Hill, Marc P. Forrest, Katherine E. Tansey, Antonio F. Pardiñas, Elliott Rees et al. « Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression ». Schizophrenia Bulletin 45, no 6 (29 décembre 2018) : 1267–78. http://dx.doi.org/10.1093/schbul/sby183.
Texte intégralKaneko, Hiroshi, Hiroshi Kitoh, Tohru Matsuura, Akio Masuda, Mikako Ito, Monica Mottes, Frank Rauch, Naoki Ishiguro et Kinji Ohno. « Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8 ». Human Genetics 130, no 5 (19 mai 2011) : 671–83. http://dx.doi.org/10.1007/s00439-011-1006-9.
Texte intégralNie, Ying, Yong Ran, Hong-Yan Zhang, Zhe-Fu Huang, Zhao-Yi Pan, Su-Yun Wang et Yan-Yi Wang. « GPATCH3 negatively regulates RLR-mediated innate antiviral responses by disrupting the assembly of VISA signalosome ». PLOS Pathogens 13, no 4 (17 avril 2017) : e1006328. http://dx.doi.org/10.1371/journal.ppat.1006328.
Texte intégralKošuth, Ján, Martina Farkašovská, Filip Mochnacký, Zuzana Daxnerová et Juraj Ševc. « Selection of Reliable Reference Genes for Analysis of Gene Expression in Spinal Cord during Rat Postnatal Development and after Injury ». Brain Sciences 10, no 1 (20 décembre 2019) : 6. http://dx.doi.org/10.3390/brainsci10010006.
Texte intégralLi, Meifeng, Changxin Liu, Xiaowen Xu, Yapeng Liu, Zeying Jiang, Yinping Li, Yangfeng Lv, Shina Lu, Chengyu Hu et Huiling Mao. « Grass carp (Ctenopharyngodon idella) GPATCH3 initiates IFN 1 expression via the activation of STING-IRF7 signal axis ». Developmental & ; Comparative Immunology 112 (novembre 2020) : 103781. http://dx.doi.org/10.1016/j.dci.2020.103781.
Texte intégralRasevic, Nikola, Joseph Bastasic, Michele Rubini, Mohan R. Rakesh, Kelly M. Burkett, Debashree Ray, Peter A. Mossey et al. « Maternal and Parent-of-Origin Gene–Environment Effects on the Etiology of Orofacial Clefting ». Genes 16, no 2 (4 février 2025) : 195. https://doi.org/10.3390/genes16020195.
Texte intégralBlotta, Simona, Pierfrancesco Tassone, Rao H. Prabhala, Piersandro Tagliaferri, David Cervi, Samir Amin, Jana Jakubikova et al. « Identification of novel antigens with induced immune response in monoclonal gammopathy of undetermined significance ». Blood 114, no 15 (8 octobre 2009) : 3276–84. http://dx.doi.org/10.1182/blood-2009-04-219436.
Texte intégralTriwidodo, Hermanu, et St Nurlaela Fauziah. « Pengaruh sinar bulan terhadap telur Spodoptera exigua (Hübner) (Lepidoptera : Noctuidae) pada lahan bawang merah ». Jurnal Entomologi Indonesia 17, no 1 (29 avril 2020) : 45. http://dx.doi.org/10.5994/jei.17.1.45.
Texte intégralThèses sur le sujet "GPATCH11"
Zanetti, Andrea. « Genetic deciphering of early onset and severe retinal dystrophies and establishment of genotype/phenotype correlations ». Electronic Thesis or Diss., Université Paris Cité, 2024. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=7893&f=78266.
Texte intégralEarly onset retinal dystrophies (EOSRD) and Leber congenital amaurosis (LCA - MIM204000) are the leading cause of incurable blindness in children. These diseases, clinically, genetically, and pathophysiologically variable, can be the sign of multisystemic syndromes, such as ciliopathies. They are mostly inherited in autosomal recessive manner, and several genes have been confirmed to be involved. However, the history and clinical expression of LCA are imperfectly understood and many mutations remain unknown. There is a need to continue deciphering these aspects to refine the understanding of pathophysiology. The identification of new responsible genes and the genotype-phenotype correlations are essential for disease management. Thanks to high-throughput gene panel-based sequencing of known LCA/EOSRD genes and investigation in clinical reference centres, the Laboratory of Genetics in Ophthalmology (LGO) has identified the molecular causes of the disease in more than 80% of cases in a cohort of over 700 families. To date, 40 unresolved LCA/EOSRD families have been submitted to whole exome sequencing (WES), leading to the identification of candidate genes, which have been selected for functional validation. Deleterious GPATCH11 variants have been identified in six families comprising 12 affected individuals with retinal dystrophy, exhibiting neurological disorders and skeletal anomalies, providing compelling evidence that recessive mutations in the GPATCH11 gene are responsible for the disease. GPATCH11 is one of the lesser-explored G-patch domain containing proteins, which are known to contribute to the spliceosome. Four recessive mutations were identified, with the splice-site NM_174931.4: c.328+1G>T being common to four out of six families and affecting the consensus splice site of intron 4, causing exon 4 to be excluded from the transcript without breaking the reading frame and producing a shorter protein. Both wild-type and mutated GPATCH11 proteins are localised in the nucleoplasm with a diffuse pattern and in the centrosome of the primary cilia of fibroblasts, suggesting roles in RNA and cilia metabolism. The mouse model (Gpatch11delta5/delta5) generated at the Institute Imagine, carrying the deletion of exon 5 equivalent to exon 4 of human GPATCH11, replicates the patients' phenotypic defects, such as retinal dystrophy and behavioural abnormalities. Retina transcriptome analysis identified deregulated pathways in gene expression and splicing, impacting key processes, such as photoreceptor light responses, RNA regulation, and primary cilia-associated metabolism. Mass-spectrometry analysis found downregulated proteins involved in vision perception, synaptic function and RNA binding and splicing pathways, and upregulated proteins mostly involved in RNA processing and splicing (Publication 1). Furthermore, the involvement of GPATCH11 in the brain is currently being explored through immunostaining and transcriptome/proteome analysis, focusing on the hippocampus, a brain structure responsible for memory. Gpatch11delta5/delta5 mice are viable and develop normally, except that males are completely infertile and exhibit smaller than normal and empty testis. The cause of this infertility is under investigation in collaboration with an external laboratory (Part 2A, B)