Articles de revues sur le sujet « Graphene Resonators »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Graphene Resonators ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Lee, Haw-Long, Yu-Ching Yang, and Win-Jin Chang. "Atomic-Scale Finite Element Method for Analyzing the Sensitivity of Graphyne-Based Resonators." Journal of Nanomaterials 2018 (August 5, 2018): 1–6. http://dx.doi.org/10.1155/2018/2580171.
Texte intégralLiu, Ying, Jia Peng Zhen, Wen Xiang Yang, et al. "Research on Dissipation Dilution Mechanism and Boundary Dissipation Suppression Technique for High-Stress Graphene Nanoelectromechanical Resonator." Journal of Physics: Conference Series 2557, no. 1 (2023): 012064. http://dx.doi.org/10.1088/1742-6596/2557/1/012064.
Texte intégralKim, Chang-Wan, Mai Duc Dai, and Kilho Eom. "Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress." Beilstein Journal of Nanotechnology 7 (May 9, 2016): 685–96. http://dx.doi.org/10.3762/bjnano.7.61.
Texte intégralNam, Man Hoai, Bui Son Tung, Bui Xuan Khuyen, et al. "Graphene-Integrated Plasmonic Metamaterial for Manipulation of Multi-Band Absorption, Based on Near-Field Coupled Resonators." Crystals 12, no. 4 (2022): 525. http://dx.doi.org/10.3390/cryst12040525.
Texte intégralZhang, Zhuo-Zhi, Xiang-Xiang Song, Gang Luo, et al. "Coherent phonon dynamics in spatially separated graphene mechanical resonators." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 5582–87. http://dx.doi.org/10.1073/pnas.1916978117.
Texte intégralLiu, Shen, Hang Xiao, Yanping Chen, et al. "Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing." Sensors 22, no. 23 (2022): 9068. http://dx.doi.org/10.3390/s22239068.
Texte intégralLiu, Yujian, Cheng Li, Shangchun Fan, Xuefeng Song, and Zhen Wan. "The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators." Nanomaterials 12, no. 15 (2022): 2725. http://dx.doi.org/10.3390/nano12152725.
Texte intégralWang, Zhenqiang, Mingqing Yang, and Junhui He. "Sensing Properties of GO and Amine-Silica Nanoparticles Functionalized QCM Sensors for Detection of Formaldehyde." International Journal of Nanoscience 13, no. 05n06 (2014): 1460011. http://dx.doi.org/10.1142/s0219581x14600114.
Texte intégralXiao, Yang, Fang Luo, Yuchen Zhang, Feng Hu, Mengjian Zhu, and Shiqiao Qin. "A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications." Micromachines 13, no. 2 (2022): 215. http://dx.doi.org/10.3390/mi13020215.
Texte intégralChen, Ting, Tianyu Xiang, Jianwei Wang, Mingxing Xu, and Tao Lei. "Tunable toroidal resonance based on hybrid graphene-metal metasurfaces." Journal of Applied Physics 132, no. 16 (2022): 165103. http://dx.doi.org/10.1063/5.0104043.
Texte intégralMa, Qichang, Jianan Dai, Aiping Luo, and Weiyi Hong. "Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright–Dark Mode Coupling in Graphene Metasurface." Nanomaterials 10, no. 2 (2020): 232. http://dx.doi.org/10.3390/nano10020232.
Texte intégralXiao, Xing, Shang-Chun Fan, and Cheng Li. "The Effect of Edge Mode on Mass Sensing for Strained Graphene Resonators." Micromachines 12, no. 2 (2021): 189. http://dx.doi.org/10.3390/mi12020189.
Texte intégralWang, Jicheng, Baojie Tang, Xiushan Xia, and Shutian Liu. "Active Multiple Plasmon-Induced Transparency with Graphene Sheets Resonators in Mid-Infrared Frequencies." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/3678578.
Texte intégralWen, Chunchao, Jie Luo, Wei Xu, Zhihong Zhu, Shiqiao Qin, and Jianfa Zhang. "Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator." Biosensors 11, no. 11 (2021): 431. http://dx.doi.org/10.3390/bios11110431.
Texte intégralFan, Shang-Chun, Yang Lu, Peng-Cheng Zhao, Fu-Tao Shi, Zhan-She Guo, and Wei-Wei Xing. "Research Progress of Graphene Nano-Electromechanical Resonant Sensors—A Review." Micromachines 13, no. 2 (2022): 241. http://dx.doi.org/10.3390/mi13020241.
Texte intégralXiao, Yang, Feng Hu, Mengjian Zhu, et al. "Effect of induced current loss on quality factor of graphene resonators." AIP Advances 12, no. 3 (2022): 035041. http://dx.doi.org/10.1063/5.0082259.
Texte intégralJokic, Ivana, Milos Frantlovic, Zoran Djuric, and Miroslav Dukic. "RF MEMS/NEMS resonators for wireless communication systems and adsorption-desorption phase noise." Facta universitatis - series: Electronics and Energetics 28, no. 3 (2015): 345–81. http://dx.doi.org/10.2298/fuee1503345j.
Texte intégralSzuromi, P. "MATERIALS SCIENCE: Graphene Oxide Resonators." Science 322, no. 5904 (2008): 1026b. http://dx.doi.org/10.1126/science.322.5904.1026b.
Texte intégralBunch, J. S., A. M. van der Zande, S. S. Verbridge, et al. "Electromechanical Resonators from Graphene Sheets." Science 315, no. 5811 (2007): 490–93. http://dx.doi.org/10.1126/science.1136836.
Texte intégralMajumdar, A., Jonghwan Kim, J. Vuckovic, and Feng Wang. "Graphene for Tunable Nanophotonic Resonators." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 1 (2014): 68–71. http://dx.doi.org/10.1109/jstqe.2013.2273413.
Texte intégralYe, Fan, Jaesung Lee, and Philip X. L. Feng. "Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators." Nanoscale 9, no. 46 (2017): 18208–15. http://dx.doi.org/10.1039/c7nr04940d.
Texte intégralWang, Yueke, Xinru Shen, and Quansheng Chen. "Tunable plasmon-induced transparency with graphene-sheet structure." Modern Physics Letters B 30, no. 19 (2016): 1650232. http://dx.doi.org/10.1142/s0217984916502328.
Texte intégralHan, Chen, Renbin Zhong, Zekun Liang, et al. "Independently Tunable Multipurpose Absorber with Single Layer of Metal-Graphene Metamaterials." Materials 14, no. 2 (2021): 284. http://dx.doi.org/10.3390/ma14020284.
Texte intégralHan, Chen, Renbin Zhong, Zekun Liang, et al. "Independently Tunable Multipurpose Absorber with Single Layer of Metal-Graphene Metamaterials." Materials 14, no. 2 (2021): 284. http://dx.doi.org/10.3390/ma14020284.
Texte intégralSun, Haoying, Lin Zhao, Jinsong Dai, et al. "Broadband Filter and Adjustable Extinction Ratio Modulator Based on Metal-Graphene Hybrid Metamaterials." Nanomaterials 10, no. 7 (2020): 1359. http://dx.doi.org/10.3390/nano10071359.
Texte intégralHe, Xunjun, Yiming Huang, Xingyu Yang, Lei Zhu, Fengmin Wu, and Jiuxing Jiang. "Tunable electromagnetically induced transparency based on terahertz graphene metamaterial." RSC Advances 7, no. 64 (2017): 40321–26. http://dx.doi.org/10.1039/c7ra06770d.
Texte intégralChen, Jianzhong, Jiali Zhang, Yutong Zhao, et al. "High-Selectivity Bandpass Filter with Controllable Attenuation Based on Graphene Nanoplates." Materials 15, no. 5 (2022): 1694. http://dx.doi.org/10.3390/ma15051694.
Texte intégralYe, Yichen, Tingting Song, Yiyuan Xie, and Chuandong Li. "Design of All-Optical Subtractors Utilized with Plasmonic Ring Resonators for Optical Computing." Photonics 10, no. 7 (2023): 724. http://dx.doi.org/10.3390/photonics10070724.
Texte intégralAtalaya, Juan, Andreas Isacsson, and Jari M. Kinaret. "Continuum Elastic Modeling of Graphene Resonators." Nano Letters 8, no. 12 (2008): 4196–200. http://dx.doi.org/10.1021/nl801733d.
Texte intégralSharma, Ankur, Utkarshaa Varshney, and Yuerui Lu. "Electronic applications of graphene mechanical resonators." IET Circuits, Devices & Systems 9, no. 6 (2015): 413–19. http://dx.doi.org/10.1049/iet-cds.2015.0134.
Texte intégralLow, Tony, Yongjin Jiang, Mikhail Katsnelson, and Francisco Guinea. "Electron Pumping in Graphene Mechanical Resonators." Nano Letters 12, no. 2 (2012): 850–54. http://dx.doi.org/10.1021/nl2038985.
Texte intégralVerbiest, Gerard J., Jan N. Kirchhof, Jens Sonntag, Matthias Goldsche, Tymofiy Khodkov, and Christoph Stampfer. "Detecting Ultrasound Vibrations with Graphene Resonators." Nano Letters 18, no. 8 (2018): 5132–37. http://dx.doi.org/10.1021/acs.nanolett.8b02036.
Texte intégralWang, Xianjun, Hongyun Meng, Shuying Deng, et al. "Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface." Nanomaterials 9, no. 3 (2019): 385. http://dx.doi.org/10.3390/nano9030385.
Texte intégralLi, Wenhua, and Wenchao Tian. "Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects." Nanomaterials 12, no. 10 (2022): 1722. http://dx.doi.org/10.3390/nano12101722.
Texte intégralJung, Minkyung, Peter Rickhaus, Simon Zihlmann, Alexander Eichler, Peter Makk, and Christian Schönenberger. "GHz nanomechanical resonator in an ultraclean suspended graphene p–n junction." Nanoscale 11, no. 10 (2019): 4355–61. http://dx.doi.org/10.1039/c8nr09963d.
Texte intégralYuan, Chenzhi, Wei Zhang, and Yidong Huang. "Photothermal effect in graphene-coated microsphere resonators." Applied Physics Express 11, no. 7 (2018): 072503. http://dx.doi.org/10.7567/apex.11.072503.
Texte intégralJung, Suyong. "Whispering-gallery mode quantum resonators in graphene." NPG Asia Materials 7, no. 10 (2015): e218-e218. http://dx.doi.org/10.1038/am.2015.106.
Texte intégralGuan, Fen, Piranavan Kumaravadivel, Dmitri V. Averin, and Xu Du. "Tuning strain in flexible graphene nanoelectromechanical resonators." Applied Physics Letters 107, no. 19 (2015): 193102. http://dx.doi.org/10.1063/1.4935239.
Texte intégralKang, Jeong Won, Jun Ha Lee, Ho Jung Hwang, and Ki-Sub Kim. "Developing accelerometer based on graphene nanoribbon resonators." Physics Letters A 376, no. 45 (2012): 3248–55. http://dx.doi.org/10.1016/j.physleta.2012.08.040.
Texte intégralGrady, Eldad, Enrico Mastropaolo, Tao Chen, Andrew Bunting, and Rebecca Cheung. "Low frequency graphene resonators for acoustic sensing." Microelectronic Engineering 119 (May 2014): 105–8. http://dx.doi.org/10.1016/j.mee.2014.02.036.
Texte intégralAlemán, Benjamín, Michael Rousseas, Yisheng Yang, et al. "Polymer-free, low tension graphene mechanical resonators." physica status solidi (RRL) - Rapid Research Letters 7, no. 12 (2013): 1064–66. http://dx.doi.org/10.1002/pssr.201300087.
Texte intégralLao, Chaode, Yaoyao Liang, Xianjun Wang, et al. "Dynamically Tunable Resonant Strength in Electromagnetically Induced Transparency (EIT) Analogue by Hybrid Metal-Graphene Metamaterials." Nanomaterials 9, no. 2 (2019): 171. http://dx.doi.org/10.3390/nano9020171.
Texte intégralHuang, Yu, and Li Hua Wu. "Nonlinear TE-Polarized Surface Plasmons at the Interface between Graphene and Metamaterials." Advanced Materials Research 933 (May 2014): 47–51. http://dx.doi.org/10.4028/www.scientific.net/amr.933.47.
Texte intégralZaitsev, Anton, Alexander Grebenchukov, and Mikhail Khodzitsky. "Tunable THz Graphene Filter Based on Cross-In-Square-Shaped Resonators Metasurface." Photonics 6, no. 4 (2019): 119. http://dx.doi.org/10.3390/photonics6040119.
Texte intégralIkeda, Taro, Etsumi Kojima, Shinya Sugiura, and Hideo Iizuka. "Reflective graphene metasurface without a metallic plate." Journal of Applied Physics 133, no. 7 (2023): 073102. http://dx.doi.org/10.1063/5.0134500.
Texte intégralSun, Jian-Zhong, Le Zhang, and Fei Gao. "Ultra-compact terahertz switch with graphene ring resonators." Chinese Physics B 25, no. 10 (2016): 108701. http://dx.doi.org/10.1088/1674-1056/25/10/108701.
Texte intégralWeber, P., J. Güttinger, I. Tsioutsios, D. E. Chang, and A. Bachtold. "Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities." Nano Letters 14, no. 5 (2014): 2854–60. http://dx.doi.org/10.1021/nl500879k.
Texte intégralSchmid, Silvan, Tolga Bagci, Emil Zeuthen, et al. "Single-layer graphene on silicon nitride micromembrane resonators." Journal of Applied Physics 115, no. 5 (2014): 054513. http://dx.doi.org/10.1063/1.4862296.
Texte intégralXu, Yuehang, Changyao Chen, Vikram V. Deshpande, et al. "Radio frequency electrical transduction of graphene mechanical resonators." Applied Physics Letters 97, no. 24 (2010): 243111. http://dx.doi.org/10.1063/1.3528341.
Texte intégralThomas, S., M. Cole, A. De Luca, et al. "Graphene-coated Rayleigh SAW Resonators for NO2 Detection." Procedia Engineering 87 (2014): 999–1002. http://dx.doi.org/10.1016/j.proeng.2014.11.328.
Texte intégral