Littérature scientifique sur le sujet « Gravity reduction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Gravity reduction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Gravity reduction"
Gonzalez, Tyler A., Lauren K. Ehrlichman, Alec Macaulay, Mohammad Ghorbanhoseini et John Kwon. « Gravity Reduction View ». Foot & ; Ankle Orthopaedics 1, no 1 (septembre 2016) : 2473011416S0019. http://dx.doi.org/10.1177/2473011416s00194.
Texte intégralLaFehr, T. R. « Standardization in gravity reduction ». GEOPHYSICS 56, no 8 (août 1991) : 1170–78. http://dx.doi.org/10.1190/1.1443137.
Texte intégralSchoutens, K., A. Sevrin et P. van Nieuwenhuizen. « Covariant w∞ gravity and its reduction to WN gravity ». Physics Letters B 251, no 3 (novembre 1990) : 355–60. http://dx.doi.org/10.1016/0370-2693(90)90719-m.
Texte intégralPark, I. Y. « Reduction of gravity-matter and dS gravity to hypersurface ». International Journal of Geometric Methods in Modern Physics 14, no 06 (4 mai 2017) : 1750092. http://dx.doi.org/10.1142/s021988781750092x.
Texte intégralLinares, Román. « S3Group-manifold reduction of gravity ». Journal of Physics : Conference Series 24 (1 janvier 2005) : 213–18. http://dx.doi.org/10.1088/1742-6596/24/1/024.
Texte intégralHeath, Philip. « Quantifying the errors in gravity reduction ». ASEG Extended Abstracts 2016, no 1 (décembre 2016) : 1–7. http://dx.doi.org/10.1071/aseg2016ab120.
Texte intégralGasperini, M., et M. Giovannini. « Gravity waves from primordial dimensional reduction ». Classical and Quantum Gravity 9, no 10 (1 octobre 1992) : L137—L141. http://dx.doi.org/10.1088/0264-9381/9/10/002.
Texte intégralCapriotti, S. « Differential geometry, Palatini gravity and reduction ». Journal of Mathematical Physics 55, no 1 (janvier 2014) : 012902. http://dx.doi.org/10.1063/1.4862855.
Texte intégralCarlip, S. « Spontaneous dimensional reduction in quantum gravity ». International Journal of Modern Physics D 25, no 12 (octobre 2016) : 1643003. http://dx.doi.org/10.1142/s0218271816430033.
Texte intégralTchrakian, D. H. « On the dimensional reduction of gravity ». General Relativity and Gravitation 19, no 2 (février 1987) : 135–45. http://dx.doi.org/10.1007/bf00770325.
Texte intégralThèses sur le sujet "Gravity reduction"
Kuyrukcu, Halil. « Kaluza-klein Reduction Of Higher Curvature Gravity Models ». Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611748/index.pdf.
Texte intégralHanusch, Maximilian [Verfasser]. « Invariant connections and symmetry reduction in loop quantum gravity / Maximilian Hanusch ». Paderborn : Universitätsbibliothek, 2014. http://d-nb.info/1064647138/34.
Texte intégralTrout, Alvin McKinley. « Further Study of the Gravity Loading Base Test Method ». Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35025.
Texte intégralPresently, the industry accepted method for determining the positive moment strength of gravity loaded standing seam metal roof systems is the "Base Test Method". The Base Test Method provides a means for determining the positive moment strength of a multiple span, multiple purlin line standing seam roof system using the results from a set of six single span, simply supported, two-purlin line experimental tests. A set of six base tests must be conducted for each combination of purlin profile, deck panel profile, clip type, and intermediate bracing configuration. The primary objective of this study is to investigate the possibility of eliminating some of the roof system parameters specifically, clip type, purlin flange width, and roof panel thickness.
This study used the results from nine series of tests. Each series consists of 11 to 14 gravity loaded base tests. The first three series were used to examine the effects of clip type on the strength of standing seam roof system. The final six series was used to examine the effects of flange width and roof panel thickness. All nine series were constructed using Z-purlin sections with flanges facing the same direction (like orientation).
Based on the results of this study, clip type, purlin flange width, and roof panel thickness all have an effect on the strength of standing seam roof systems. Although none of the roof components can be completely eliminated from the required test matrix, by using trend relationships an acceptable test protocol was developed that results in a significant reduction in the number of required base tests.
Master of Science
Sandström, Martin. « Reduction Mechanics of The Cosmological Constant ». Thesis, Uppsala universitet, Teoretisk fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-340233.
Texte intégralKvantprocessen av membranskapelse via en total anti-symmetrisk tensor och gravitationsfält är betänkt i arbiträra rumstidsdimensioner. Skapelseprocessen är beskriven via instantontunnling. Då membranen är skapade, reduceras värdet på energidensiteten som är associerad med det anti-symmetriska fältet. För en samling av parametrar och begynnelsevärden, stannar skapelseprocessen upp så fort den kosmologiska konstanten har ett värde nära noll. En kort utforskning av kanonisk gravitation är också betänkt, där ett system i termer av ADM-dekomposition i arbiträra rumstidsdimensioner är introducerat.
Sevieri, Giacomo [Verfasser], Hermann G. [Akademischer Betreuer] Matthies et Falco Anna [Akademischer Betreuer] De. « The seismic assessment of existing concrete gravity dams : FE model uncertainty quantification and reduction / Giacomo Sevieri ; Hermann G. Matthies, Anna De Falco ». Braunschweig : Technische Universität Braunschweig, 2021. http://d-nb.info/1225038251/34.
Texte intégralMorand, Kevin. « Symétries nonrelativistes et gravitation de Newton-Cartan ». Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4009/document.
Texte intégralWith the advent of general relativity, the profound interaction between the geometry of spacetime and gravitational phenomena became a truism of modern physics. However, the intimate relationship between spacetime geometry and gravitation is by no means restricted to relativistic physics but can in fact be successfully applied to nonrelativistic physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity. This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures whose discrepancies in comparison with their relativistic peers are better understood when embedded inside specific classes of relativistic gravitational waves. The ambition of this Doctoral Thesis is twofold: In a first part, we discuss a generalisation of the class of gravitational waves allowing the embedding of nonrelativistic features, explore their geometric properties and the new nonrelativistic structures emerging from this study. In a second part, we advocate how the group-theoretically oriented approach of Cartan to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic and ambient fashion
Reho, John Joseph. « The Impact of Reductions in Uterine Perfusion Pressure on Uterine Arterial Reactivity in Gravid Rats II and L-tyrosine Polyphosphate Nanoparticles as a Potential In Vivo Gene Delivery Device ». University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1333899328.
Texte intégralSave, Himanshu Vijay. « Using regularization for error reduction in GRACE gravity estimation ». 2009. http://hdl.handle.net/2152/7665.
Texte intégraltext
Wang, Jian-li, et 王建立. « Application of Conical Cross-section to Terrain Correction for Gravity Reduction ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/42158379984383531298.
Texte intégral國立成功大學
地球科學系碩博士班
95
The difference between actual gravity referring to the geoid and normal gravity estimated on a selected specific ellipsoid is generally defined as gravity anomaly. Because of the actual gravity on the geoid can not be obtained directly, we have to reduce the gravity measured on the physical surface of the earth to the geoid. Both of the two main procedures of gravity reduction are the free-air reduction and the terrain correction which removed the mass between the earth surface and the geoid. Traditionally, we always apply the Bouguer correction first and then remove the excess mass or fill it in the terrain correction. In this paper, we directly apply the terrain correction by means of the conical cross-section method. The conical cross-section method assumes the surveying-site as an original point and then divides the neighbor topography into serial sector areas with equal central angle. The more we make the central angel smaller, the more we get the real expressed topography. The central lines of the sector are used to describe the variance of the topography within every sector area. By using the conical cross-section equations provided from this paper, we get the terrain correction. Comparing with the traditional Helmert's method, the principal differences are: (1) Helmert's method bases on the leveling-plate of the station, our method is on the geoid; (2) the cross-section of Helmert's method is trapezoid, our method is conical. The method gave from this paper is more suitable than Helmert's to fit the real topography. In this paper, four specific points are selected from different sorts of topography. Two points are on the mountaintop. Another one is on the mountain valley, and the last one is on the mountainside. The plate A and plate B are used to calculate the topographic effects. From the calculated result, we found out the standard deviation could reach to 1.1 mGal by using the twelve equally divided parts of topography. Comparing results between conical cross-section and Helmert's method, the difference of the three specific points are within 4 mGal except the YuSan point of 12.6 mGal. Hence, it is reasonable to divide the topography into twelve equal parts for the terrain correction in Taiwan.
LIN, DONG-SANG, et 林東山. « THE STUDIES OF PREDICTED GRAVITY ANOMALY BY USING ORDINARY KRIGING AND PLANNING GRAVITY STATION BY USING VARIANCE REDUCTION ANALYSIS ». Thesis, 1995. http://ndltd.ncl.edu.tw/handle/39125368293283266988.
Texte intégral國立交通大學
土木工程研究所
83
"Ordinary Kriging Method" is used to test the predicted results of free air gravity anomaly , then comparision are made between the results obtained from "Ordinary Kriging Method" and those from "The Method of Least-Sequare Surface Fitting". Triangulation points are chosen to be the possible station positions, and "Variance Reduction Analysis" which extended from "Ordinary Kriging" are adopted to extract the optimal gravity station positions out.
Livres sur le sujet "Gravity reduction"
United States. National Aeronautics and Space Administration., dir. Extinguishment of a diffusion flame over a PMMA cylinder by depressurization in reduced-gravity : Under grant NGT-50862. [Washington, DC : National Aeronautics and Space Administration, 1996.
Trouver le texte intégralQin, Xinhua. Data reduction analysis for the Stanford relativity gyroscope experiment. 1991.
Trouver le texte intégralExtinguishment of a diffusion flame over a PMMA cylinder by depressurization in reduced-gravity : Under grant NGT-50862. [Washington, DC : National Aeronautics and Space Administration, 1996.
Trouver le texte intégralZeitlin, Vladimir. Getting Rid of Fast Waves : Slow Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0005.
Texte intégralChapitres de livres sur le sujet "Gravity reduction"
Guo, Jun-Yi. « Gravity Reduction ». Dans Physical Geodesy, 253–319. Cham : Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-23320-3_6.
Texte intégralRice, Donald A. « Gravity and Gravity Reduction ». Dans Contemporary Geodesy : Proceedings of a Conference Held at the Harvard College Observatory-Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, December 1-2, 1958, 40–44. Washington D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm004p0040.
Texte intégralLambert, Walter D. « The Isostatic Reduction of Gravity Data and Its Indirect Effect ». Dans Gravity Anomalies : Unsurveyed Areas, 81–84. Washington, D.C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm009p0081.
Texte intégralGrombein, Thomas, Kurt Seitz et Bernhard Heck. « Topographic–Isostatic Reduction of GOCE Gravity Gradients ». Dans International Association of Geodesy Symposia, 349–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37222-3_46.
Texte intégralMigliaccio, F., F. Sansò et F. Sacerdote. « The Boundary Value Problem Approach to the Data Reduction for a Spaceborne Gradiometer Mission ». Dans Gravity, Gradiometry and Gravimetry, 67–77. New York, NY : Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3404-3_9.
Texte intégralLee, S. B., et D. H. Lee. « Evaluation of the Topographic Effect using the Various Gravity Reduction Methods for Precise Geoid Model in Korea ». Dans Gravity, Geoid and Earth Observation, 273–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_35.
Texte intégralNaujoks, M., S. Eisner, C. Kroner, A. Weise, P. Krause et T. Jahr. « Local Hydrological Information in Gravity Time Series : Application and Reduction ». Dans Geodesy for Planet Earth, 297–304. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20338-1_36.
Texte intégralBrovelli, M., F. Migliaccio et F. Sansó. « A BVP Approach to the Reduction of Spaceborne Gradiometry : Theory and Simulations ». Dans From Mars to Greenland : Charting Gravity With Space and Airborne Instruments, 169–79. New York, NY : Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9255-2_16.
Texte intégralBassanino, M., F. Migliaccio et F. Sacerdote. « A BVP Approach to the Reduction of Spaceborne GPS and Accelerometric Observations ». Dans From Mars to Greenland : Charting Gravity With Space and Airborne Instruments, 323–37. New York, NY : Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9255-2_29.
Texte intégralSevieri, G., A. De Falco et G. Marmo. « Uncertainty Quantification and Reduction in the Structural Analysis of Existing Concrete Gravity Dams ». Dans Lecture Notes in Civil Engineering, 875–87. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51085-5_50.
Texte intégralActes de conférences sur le sujet "Gravity reduction"
Lapeyrere, V., P. Kervella, S. Lacour, N. Azouaoui, C. E. Garcia-Dabo, G. Perrin, F. Eisenhauer et al. « GRAVITY data reduction software ». Dans SPIE Astronomical Telescopes + Instrumentation, sous la direction de Jayadev K. Rajagopal, Michelle J. Creech-Eakman et Fabien Malbet. SPIE, 2014. http://dx.doi.org/10.1117/12.2056850.
Texte intégralWhile, J., E. K. Biegert et A. Jackson. « Gravity Sample Density Reduction Using Gradiometry ». Dans 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.h001.
Texte intégralFrasheri, Neki, et Betim Cico. « Error reduction in parallel gravity inversion ». Dans 2014 3rd Mediterranean Conference on Embedded Computing (MECO). IEEE, 2014. http://dx.doi.org/10.1109/meco.2014.6862707.
Texte intégralOh, S. H., et Jong Hyuk Yoon. « Schwarzschild Solution in the (2+2) Hamiltonian Reduction ». Dans Second LeCosPA International Symposium : Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0086.
Texte intégralPilkington*, Mark, et Pejman Shamsipour. « Noise reduction procedures for gravity gradiometer data ». Dans SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0308.1.
Texte intégralGerstmann, Jens. « Surface reorientation upon step reduction in gravity ». Dans HADRONS AND NUCLEI : First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1302584.
Texte intégralIORIO, ALFREDO. « TOPOLOGICAL GRAVITY, KALUZA-KLEIN REDUCTION, AND THE KINK ». Dans Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0287.
Texte intégralCarlip, Steven, Jerzy Kowalski-Glikman, R. Durka et M. Szczachor. « Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity ? » Dans THE PLANCK SCALE : Proceedings of the XXV Max Born Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3284402.
Texte intégralCantcheff, Marcelo Botta. « Lorentz Symetry Breaking in Gravity and Dimensional Reduction ». Dans Fifth International Conference on Mathematical Methods in Physics. Trieste, Italy : Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.031.0060.
Texte intégralTongur, Vahit. « BOUGER REDUCTION IN KONYA BASIN EXAMPLE FOR GRAVITY DATAS AND INTERPOLATION OF GRAVITY ANOMALIES ». Dans SGEM2011 11th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2011/s07.104.
Texte intégralRapports d'organisations sur le sujet "Gravity reduction"
Schiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component Test Program : Dry Specimens (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/vsjs5869.
Texte intégralSchiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component Test Program : Wet Specimens I (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/dqhf2112.
Texte intégralSchiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component Test Program : Wet Specimens II (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/ldbn4070.
Texte intégral