Littérature scientifique sur le sujet « Half-wave and full-wave rectifier »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Half-wave and full-wave rectifier ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Half-wave and full-wave rectifier"
Chien, Hung-Chun. « Switch-Controllable Full-Phase Operation Precision Half-Wave Rectifier Using a Single OTRA ». Journal of Circuits, Systems and Computers 25, no 07 (22 avril 2016) : 1650070. http://dx.doi.org/10.1142/s0218126616500705.
Texte intégralOnah, Aniagboso John. « Analysis of Controlled Single-phase Full-Wave Rectifier with RL Load ». European Journal of Engineering Research and Science 3, no 12 (7 décembre 2018) : 25–31. http://dx.doi.org/10.24018/ejers.2018.3.12.981.
Texte intégralHeljo, Petri S., Miao Li, Kaisa E. Lilja, Himadri S. Majumdar et Donald Lupo. « Printed Half-Wave and Full-Wave Rectifier Circuits Based on Organic Diodes ». IEEE Transactions on Electron Devices 60, no 2 (février 2013) : 870–74. http://dx.doi.org/10.1109/ted.2012.2233741.
Texte intégralNijhuis, Christian A., William F. Reus, Adam C. Siegel et George M. Whitesides. « A Molecular Half-Wave Rectifier ». Journal of the American Chemical Society 133, no 39 (5 octobre 2011) : 15397–411. http://dx.doi.org/10.1021/ja201223n.
Texte intégralSyazmie Bin Sepeeh, Muhamad, Farahiyah Binti Mustafa, Anis Maisarah Binti Mohd Asry, Sy Yi Sim et Mastura Shafinaz Binti Zainal Abidin. « Development of Op-Amp Based Piezoelectric Rectifier for Low Power Energy Harvesting Applications ». MATEC Web of Conferences 150 (2018) : 01012. http://dx.doi.org/10.1051/matecconf/201815001012.
Texte intégralDjukic, Slobodan. « Full-wave current conveyor precision rectifier ». Serbian Journal of Electrical Engineering 5, no 2 (2008) : 263–71. http://dx.doi.org/10.2298/sjee0802263d.
Texte intégralGift, Stephan J. G. « An improved precision full-wave rectifier ». International Journal of Electronics 89, no 3 (mars 2002) : 259–65. http://dx.doi.org/10.1080/00207210210126943.
Texte intégralPREMPRANEERACH, YOTHIN. « A single-diode full-wave rectifier ». International Journal of Electronics 58, no 6 (juin 1985) : 1033–36. http://dx.doi.org/10.1080/00207218508939102.
Texte intégralPetrović, Predrag Boško. « Variable mode CMOS full-wave rectifier ». Analog Integrated Circuits and Signal Processing 90, no 3 (19 janvier 2017) : 659–68. http://dx.doi.org/10.1007/s10470-017-0923-5.
Texte intégralJain, Prateek, et Amit Joshi. « Full-Wave Bridge Rectifier with CMOS Pass Transistors Configuration ». Journal of Circuits, Systems and Computers 27, no 06 (22 février 2018) : 1850092. http://dx.doi.org/10.1142/s0218126618500925.
Texte intégralThèses sur le sujet "Half-wave and full-wave rectifier"
Korec, Pavol. « Návrh obvodů pro zpracování biomedicínských signálů v technologii CMOS ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318198.
Texte intégralBrinsfield, Jason. « Modeling and Simulation of Parallel D-STATCOMs with Full-Wave Rectifiers ». DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1209.
Texte intégralKaya, Ibrahim. « A Switch Mode Power Supply For Producing Half Wave Sine Output ». Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609781/index.pdf.
Texte intégralanalysis, design and implementation of a DC-DC converter with active clamp forward topology is presented. The main objective of this thesis is generating a rectified sinusoidal voltage at the output of the converter. This is accomplished by changing the reference signal of the converter. The converter output is applied to an inverter circuit in order to obtain sinusoidal waveform. The zero crossing points of the converter is detected and the inverter drive signals are generated in order to obtain sinusoidal waveform from the output of the converter. Next, the operation of the DC-DC converter and sinusoidal output inverter coupled performance is investigated with resistive and inductive loads to find out how the proposed topology performs. The design is implemented with an experimental set-up and steady state and dynamic performance of the designed power supply is tested. Finally an evaluation of how better performance can be obtained from this kind of arrangement to obtain a sinusoidal output inverted is thoroughly discussed
Brandt, Lundqvist Olof. « Construction of an Active Rectifier for a Transverse-Flux Wave Power Generator ». Thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215635.
Texte intégralVågkraft är en energikälla som skulle kunna göra en avgörande skillnad i omställningenmot en hållbar energisektor. Tillväxten för vågkraft har dock intevarit lika snabb som tillväxten för andra förnybara energislag, såsom vindkraftoch solkraft. Vissa tekniska hinder kvarstår innan ett stort genombrott för vågkraftkan bli möjligt. Ett hinder fram tills nu har varit de låga spänningarna ochde resulterande höga effektförlusterna i många vågkraftverk. En ny typ av vågkraftsgenerator,som har tagits fram av Anders Hagnestål vid KTH i Stockholm,avser att lösa dessa problem. I det här examensarbetet behandlas det effektelektroniskaomvandlingssystemet för Anders Hagneståls generator. Det beskriverplanerings- och konstruktionsprocessen för en enfasig AC/DC-omvandlare, somså småningom skall bli en del av det större omvandlingssystemet för generatorn.Ett kontrollsystem för omvandlaren, baserat på hystereskontroll för strömmen,planeras och sätts ihop. Den färdiga enfasomvandlaren visar goda resultat underdrift som växelriktare. Dock kvarstår visst konstruktionsarbete och viss kalibreringav det digitala kontrollsystemet innan omvandlaren kan användas för sinuppgift i effektomvandlingen hos vågkraftverket.
Wahid, Ferdus. « Analysis Of A Wave Power System With Passive And Active Rectification ». Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425722.
Texte intégralFalk, Olson Gustaf. « Power Electronic Stages for a TFPMSM in Wave Power Applications ». Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194201.
Texte intégralDirektdrivna vågenergiomvandlingssystem har utpekats som en potentiellt starkt bidragande resurs för att tillgodose världens efterfrågan på energi med andelar på uppemot 25 % av energimixen förutspådda. Anders Hagnestål bedriver forskning och utveckling av en ny typ av linjär permanentmagnetiserad transversalflödesmaskin vid Kungliga Tekniska Högskolan. Konceptmaskinen är särskilt väl lämpad för de rådande marina förhållandena genom att kunna producera stora krafter vid låga hastigheter med utomordentligt låga resistiva förluster. Maskinen går emellertid i kraftig magnetisk mättnad och drar asymmetriska strömmar vid nominell drift. Dessutom är effektfaktorn låg i jämförelse med standardmaskiner. Alltsomallt inför detta hårda krav på det effektelektroniska systemet och kontrollalgoritmerna. Målet med detta examensarbete har varit att designa ett funktionellt effektkonditioneringssystem som sammanfogar maskinen med det angränsande elektriska nätet. För att åstadkomma detta föreslås att en tvånivås-trefasomriktare kopplas rygg-mot-rygg till tvånivås-enfasomvandlare (aktiva likriktare) som i sin tur är kopplade till varje maskinfas. Med den här konfigurationen visas det att spänningen på den mellanliggande DC-länken kan hållas konstant med begränsat rippel, alltmedan effekt tillförs nätet vid effektfaktor ett genom att dimensionera DC-kondensatorn på rätt sätt och använda en kontrollag baserad på exakt linjärisering. Maskinens fasströmmar kan kontrolleras effektivt med hjälp av en kaskadkopplad PID-regulator med schemalagda förstärkningsfaktorer. Genom att inkludera ett lågpassfilter förväntas det att järnförlusterna i maskinen kan begränsas även vid lägre switchfrekvenser. Genom att lösa ett kostnadsoptimeringsproblem visas det att den resulterande aktiva likriktaren kan uppnå en verkningsgrad på 99.1 %. Slutligen, med det här examensarbetet som grund, föreslås det att den termiska stressen på de valda halvledarkomponentsmodulerna och järnförlusterna i maskinen utvärderas för att ytterligare förbättra designen. Om högre verkningsgrad eftersträvas hos de aktiva likriktarna kan mer komplicerade omvandlartopologier övervägas.
Xiong, Qiuchi. « Control of Vibration Systems with Mechanical Motion Rectifier and their Applications to Vehicle Suspension and Ocean Energy Harvester ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98004.
Texte intégralMaster of Science
Vibration happens in our daily life in almost all cases. It is a regular or irregular back and forth motion of particles. For example, when we start a vehicle, the engine will do circular motion to drive the wheel, which causes vibration and we feel wave pulses on our body when we sit in the car. However, this kind of vibration is undesirable, since it makes us uncomfortable. The car manufacture designs cushion seats to absorb vibration. This is a way to use hardware to control vibration. However, this is not enough. When vehicle goes through bumps, we do have suspension to absorb vibration transferred from road to our body. The car still experiences a big shock that makes us feel dizzy. On the opposite direction, in some cases when vibration becomes the motion source for energy harvesting, we would like to enhance it. Hardware can be helpful, since by tuning some parameters of an energy harvesting device, it can match with the vibration source to maximize vibration. However, it is still not enough due to low adaptability of a fixed parameter system. To overcome the limitation of hardware, researches begin to think about the way to control vibration, which is the method to change system behavior by using real-time adjustable hardware. By introducing vibration control, the theory behind that started to be investigated. This thesis investigates the vibration control theory application in both cases: vibration reduction and vibration enhancement, which are mentioned above due to opposite application preferences. There are two major applications of vibration control: vehicle suspension control and ocean wave energy converter (WEC) control. The thesis starts from the control development for both fields with general modeling criteria, then followed by control development with specific hardware design-mechanical motion rectifier (MMR) gearbox-applied on both systems. The MMR gearbox is the researcher designed hardware that targets on vibration adjustment with hardware capability, which is similar as the cushion seats mentioned at the beginning of the abstract. However, the MMR cannot have capability to furtherly optimize system vibration, which introduces the necessity of control development based on the existing hardware. In the suspension control application, the control strategy introduced successfully improve the vehicle ride comfort by 29.2%, which means the vehicle body acceleration has been reduced furtherly to let passenger feel less vibration. In the WEC application, the power absorbed from wave has been improved by 57% by applying suitable control strategy. The performance of improvement on vibration control has proved the effect on further vibration optimization beyond hardware limitation.
Kevin, Bergman. « Design Active Rectifiers and Hybrid Energy Storage for A Farm of 10 Uppsala University Wave Energy Converter at Resonance ». Thesis, Uppsala universitet, Institutionen för elektroteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448948.
Texte intégralBláha, Martin. « Elektronicky komutovaný motor ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217634.
Texte intégralLai, Wen-Pin, et 賴文彬. « The half-wave and the full-wave precision rectifier using OTA ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/65730808452352802145.
Texte intégral中原大學
電子工程研究所
93
The thesis is to discuss with the design of precision full-wave and half-wave rectifiers using OTAs( Operation Transconductance Amplifiers ). This paper will introduce the characteristic of the active OTA current-mode analog integrated circuit, and discuss the marking of OTA’s circuit structure. The OTA is designed by N-MOSFET and P-MOSFET of TSMC 0.35μm CMOS technology. Then, the output of the OTA is connected to the rectifier, thus forming rectified current waveform at the output of the rectifier. Then, through the output resistor RL, the current waveform is transformed into voltage waveform. In this paper, the design of positive and negative half-wave rectifier uses one OTA, and the design of positive and negative full-wave rectifier uses two OTAs. In the design of the full-wave rectifier, BOTA ( Bidirectional Operational Transconductance Amplifier ) can also be used to represent the equivalent circuit of such rectifier. The diodes used by the full-wave and half-wave rectifier also belongs to TSMC 0.35μm CMOS technology. Throughout the experiment, the H-spice is used to simulate the output waveform to confirm the waveform theory.
Livres sur le sujet "Half-wave and full-wave rectifier"
Khamala, F. O. Effects of overlap in three-phase full-wave controlled and uncontrolled bridge rectifiers. Bradford, 1986.
Trouver le texte intégralChapitres de livres sur le sujet "Half-wave and full-wave rectifier"
Halin, H. J., et R. Strebel. « Transient Response of a Two-Phase Half-Wave Rectifier ». Dans Solving Problems in Scientific Computing Using Maple and MATLAB®, 297–308. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-97953-8_20.
Texte intégralHalin, H. J., et R. Strebel. « Transient Response of a Two-Phase Half-Wave Rectifier ». Dans Solving Problems in Scientific Computing Using Maple and MATLAB®, 285–97. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97619-3_20.
Texte intégralHalin, H. J., et Rolf Strebel. « Transient Response of a Two-Phase Half-Wave Rectifier ». Dans Solving Problems in Scientific Computing Using Maple and MATLAB®, 299–310. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18873-2_20.
Texte intégralCalvo-Rolle, José Luis, Héctor Quintián, Emilio Corchado et Ramón Ferreiro-García. « Intelligent Model to Obtain Current Extinction Angle for a Single Phase Half Wave Controlled Rectifier with Resistive and Inductive Load ». Dans Advances in Intelligent Systems and Computing, 249–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32922-7_26.
Texte intégralCasteleiro-Roca, José Luis, Héctor Quintián, José Luis Calvo-Rolle, Emilio Corchado et María del Carmen Meizoso-López. « Intelligent Model to Obtain Initial and Final Conduction Angle of a Diode in a Half Wave Rectifier with a Capacitor Filter ». Dans Advances in Intelligent Systems and Computing, 121–30. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01854-6_13.
Texte intégralWeik, Martin H. « full-wave half-power point ». Dans Computer Science and Communications Dictionary, 661. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7769.
Texte intégralGao, Hao, Marion Matters-Kammerer, Dusan Milosevic et Peter G. M. Baltus. « mm-Wave Rectifiers ». Dans Analog Circuits and Signal Processing, 43–58. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72980-0_5.
Texte intégralSperling, George, Charles Chubb, Joshua A. Solomon et Zhong-Lin Lu. « Full-Wave and Half-Wave Processes in Second-Order Motion and Texture ». Dans Ciba Foundation Symposium 184 - Higher-Order Processing in the Visual System, 287–308. Chichester, UK : John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514610.ch15.
Texte intégralİdemen, M., et A. Alkumru. « Scattering of a Plane-Wave by a Moving Half-Plane : A Full Relativistic Study ». Dans Springer Proceedings in Physics, 27–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30636-6_3.
Texte intégralPu, H., T. Cai, N. P. Bigelow, T. T. Grove et P. L. Gould. « Cascade Atoms in a Bichromatic Standing Wave : A Magnetic-Field-Free Rectified Force Trap ». Dans Coherence and Quantum Optics VII, 393–94. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_70.
Texte intégralActes de conférences sur le sujet "Half-wave and full-wave rectifier"
Virattiya, Athipong, Boonying Knobnob et Montree Kumngern. « CMOS precision full-wave and half-wave rectifier ». Dans 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5952911.
Texte intégralKumngern, Montree, Pongsakorn Saengthong et Somyot Junnapiya. « DDCC-based full-wave rectifier ». Dans Its Applications (CSPA). IEEE, 2009. http://dx.doi.org/10.1109/cspa.2009.5069241.
Texte intégralOruganti, Sirish, Yatin Gilhotra, Neeta Pandey et Rajeshwari Pandey. « New topologies for OTRA based programmable precision half-wave and full-wave rectifiers ». Dans 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE). IEEE, 2017. http://dx.doi.org/10.1109/rdcape.2017.8358291.
Texte intégralImai, Shohei, S. Tamaru, K. Fujimori, M. Sanagi et S. Nogi. « Efficiency and harmonics generation in microwave to DC conversion circuits of half-wave and full-wave rectifier types ». Dans 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission : Technologies, Systems, and Applications (IMWS 2011). IEEE, 2011. http://dx.doi.org/10.1109/imws.2011.5877081.
Texte intégralFukui, Kazuaki, et Hirotaka Koizumi. « Half-wave Class DE Low dv/dt rectifier ». Dans APCCAS 2012-2012 IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2012. http://dx.doi.org/10.1109/apccas.2012.6418973.
Texte intégralMinhaj, Nigar. « Electronically Controlled Precision Full-wave Rectifier Circuits ». Dans 2009 International Conference on Advances in Recent Technologies in Communication and Computing. IEEE, 2009. http://dx.doi.org/10.1109/artcom.2009.188.
Texte intégralPeters, C., O. Kessling, F. Henrici, M. Ortmanns et Y. Manoli. « CMOS Integrated Highly Efficient Full Wave Rectifier ». Dans 2007 IEEE International Symposium on Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iscas.2007.377947.
Texte intégralFaheem, Ansari, Narendra Bhagat et Uday Pandit Khot. « Current Mode Full Wave Rectifier Topology for Integration ». Dans 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018. http://dx.doi.org/10.1109/rteict42901.2018.9012391.
Texte intégralKumngern, M. « CMOS precision full-wave rectifier using current conveyor ». Dans 2010 IEEE International Conference of Electron Devices and Solid- State Circuits (EDSSC). IEEE, 2010. http://dx.doi.org/10.1109/edssc.2010.5713705.
Texte intégralLiu, Lihua. « Improved Design for Full Wave Rectifier Rectification Circuit ». Dans 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.31.
Texte intégral