Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Half-wave and full-wave rectifier.

Articles de revues sur le sujet « Half-wave and full-wave rectifier »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Half-wave and full-wave rectifier ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chien, Hung-Chun. « Switch-Controllable Full-Phase Operation Precision Half-Wave Rectifier Using a Single OTRA ». Journal of Circuits, Systems and Computers 25, no 07 (22 avril 2016) : 1650070. http://dx.doi.org/10.1142/s0218126616500705.

Texte intégral
Résumé :
This paper proposes designing a precision rectification circuit by using a single operational transresistance amplifier (OTRA). The proposed circuit is a switch-controllable OTRA-based full-phase operation precision half-wave rectifier, which can rectify an input signal to yield four-phase half-wave rectified output signals. Compared with existing designs, the advantage of the proposed circuit is that all of the possible rectified outputs of a half-wave rectifier can be obtained in one configuration. This paper first reviews previously reported half-wave precision rectifiers consisting of various active devices and the proposed OTRA-based precision half-wave rectifier; subsequently, an analysis of non-ideal effects and design considerations are presented. Computer simulations of the proposed circuit were conducted for verifying the feasibility of the circuit by using the Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-[Formula: see text]m CMOS process technology. For practical circuit measurements, a prototype circuit was implemented, and commercially integrated circuits (AD844ANs) and discrete passive components were used to conduct experimental tests. The simulation and experimental results exhibited satisfactory agreement with those of theoretical analyses.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Onah, Aniagboso John. « Analysis of Controlled Single-phase Full-Wave Rectifier with RL Load ». European Journal of Engineering Research and Science 3, no 12 (7 décembre 2018) : 25–31. http://dx.doi.org/10.24018/ejers.2018.3.12.981.

Texte intégral
Résumé :
Diodes are popularly used in rectifiers, which convert an ac signal into a unidirectional signal. They produce a fixed output voltage only. However, controlled switches such as thyristors are used to vary the output voltage of a converter by adjusting the delay or firing angle α of the thyristors. Phase-controlled converters are simple, efficient and less expensive. There are both single-phase and three-phase converters depending on the input supply. We also have half-wave and full-wave converters. The half-wave converter has only one polarity of output voltage and current, while for the full converter, the polarity of the output voltage can be either positive or negative. The purpose of this paper is to investigate the operation of the Single-phase full-wave rectifier. Load current for the controlled full-wave rectifier with R-L load can be either discontinuous or continuous. The paper shows how the rectifier transits from discontinuous current operation to continuous current operation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Heljo, Petri S., Miao Li, Kaisa E. Lilja, Himadri S. Majumdar et Donald Lupo. « Printed Half-Wave and Full-Wave Rectifier Circuits Based on Organic Diodes ». IEEE Transactions on Electron Devices 60, no 2 (février 2013) : 870–74. http://dx.doi.org/10.1109/ted.2012.2233741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nijhuis, Christian A., William F. Reus, Adam C. Siegel et George M. Whitesides. « A Molecular Half-Wave Rectifier ». Journal of the American Chemical Society 133, no 39 (5 octobre 2011) : 15397–411. http://dx.doi.org/10.1021/ja201223n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Syazmie Bin Sepeeh, Muhamad, Farahiyah Binti Mustafa, Anis Maisarah Binti Mohd Asry, Sy Yi Sim et Mastura Shafinaz Binti Zainal Abidin. « Development of Op-Amp Based Piezoelectric Rectifier for Low Power Energy Harvesting Applications ». MATEC Web of Conferences 150 (2018) : 01012. http://dx.doi.org/10.1051/matecconf/201815001012.

Texte intégral
Résumé :
In this study, the development of operational amplifier (op-amp) based rectifier for piezoelectric energy harvesting applications was studied. The two stage op-amp full wave rectifier was used to convert the AC signal to DC signal voltage received by piezoelectric devices. The inverted half wave rectifier integrated with full wave rectifier were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB), using standard fabrication process. The achievement of this rectifier was able to boost up the maximum voltage of 5 V for input voltage of 800 mV. The output of the rectifier was in DC signal after the rectification by the op-amp. In term of power, the power dissipation was reduced consequently the waste power decreases. Future work includes optimization of the rectifying circuit to operate more efficiently can be made to increase the efficiency of the devices.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Djukic, Slobodan. « Full-wave current conveyor precision rectifier ». Serbian Journal of Electrical Engineering 5, no 2 (2008) : 263–71. http://dx.doi.org/10.2298/sjee0802263d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gift, Stephan J. G. « An improved precision full-wave rectifier ». International Journal of Electronics 89, no 3 (mars 2002) : 259–65. http://dx.doi.org/10.1080/00207210210126943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

PREMPRANEERACH, YOTHIN. « A single-diode full-wave rectifier ». International Journal of Electronics 58, no 6 (juin 1985) : 1033–36. http://dx.doi.org/10.1080/00207218508939102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Petrović, Predrag Boško. « Variable mode CMOS full-wave rectifier ». Analog Integrated Circuits and Signal Processing 90, no 3 (19 janvier 2017) : 659–68. http://dx.doi.org/10.1007/s10470-017-0923-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jain, Prateek, et Amit Joshi. « Full-Wave Bridge Rectifier with CMOS Pass Transistors Configuration ». Journal of Circuits, Systems and Computers 27, no 06 (22 février 2018) : 1850092. http://dx.doi.org/10.1142/s0218126618500925.

Texte intégral
Résumé :
An effortless, more efficient full-wave bridge rectifier is introduced with minimum distortion. Efficient and exploratory combinations of CMOS logic are not only utilized to design full-wave bridge rectifier, but also as pass transistors configurations at the input. The particular CMOS logic (used to design core rectifier circuit) is a collective form of SDG-NMOS and SGS-PMOS. SDG-NMOS refers to a shorted drain gate n-channel metal oxide semiconductor. SGS-PMOS refers to shorted gate to source p-channel metal oxide semiconductor. Due to the utilization of renovated MOS configuration after the replacement of the diode, the efficiency of the full-wave bridge rectifier is increased up to 11% compared to p-n junction diode based full wave bridge rectifier. The proposed full wave bridge rectifier is a comparably low power circuit. The proposed CMOS based full-wave bridge rectifier is optimized at 45-nm CMOS technology. Cadence experimental simulation and implementations of the leakage power and efficiency demonstrate better consistency through the proposed circuit.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Shi, Liwei, Bing Yan, Xiaoyu Zhou et Xueyi Zhang. « Open-Circuit Fault-Tolerant Characteristics of a New Four-Phase Doubly Salient Electro-Magnetic Generator ». Sustainability 10, no 11 (10 novembre 2018) : 4136. http://dx.doi.org/10.3390/su10114136.

Texte intégral
Résumé :
In order to improve the reliability of a more sustainable mobility generator, a four-phase Doubly Salient Electro-Magnetic Generator (DSEG) and its phase-isolated rectifier are proposed in this paper. The mathematical model of the machine and fault-tolerant rectifiers is proposed, which indicates that the four-phase fault-tolerant DSEG should have symmetric phases. With the asymmetry analysis of the traditional 8/6-pole DSEG, a new 12/9-pole DSEG with symmetric phases is proposed. The four-phase full bridge rectifier, positive half-wave rectifier and four-phase H bridge rectifier are presented. The voltage waveforms, no-load characteristics and loading characteristics with different rectifiers will be given based on the simulation and the experiment on a prototype of DSEG, and the results show that the four-phase H bridge rectifier has the best fault tolerant no-load characteristic and external characteristic, except that it needs more diodes.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Doan, Chuc Huu, et Duong Gia Bach. « Investigation of Rectifier Circuit Configurations for Microwave Power Transmission System Operating at S Band ». International Journal of Electrical and Computer Engineering (IJECE) 5, no 5 (1 octobre 2015) : 967. http://dx.doi.org/10.11591/ijece.v5i5.pp967-974.

Texte intégral
Résumé :
The purpose of this work is to propose rectifier circuit topologies for microwave power transmission system operating at ISM band. This paper particularly presents in detail the proposed rectifier circuit configurations including series diode half wave rectifier and voltage doubler rectifier. The maximum conversion efficiency of rectifier using series diode half wave rectifier is 40.17 % with 220 W load resistance whereas it is 70.06 % with 330 W load resistance for voltage doubler rectifier. Compared to the series rectifier circuit, it is significant to note that the voltage doubler rectifier circuit has higher efficiency. The circuits presented are tuned for a center frequency of 2.45 GHz. The rectifiers were fabricated using microstrip technology. The design, fabrication and measurement results were obtained using a well-known professional design software for microwave engineering, Advanced Design System 2009 (ADS 2009). All design and measurement results will be reported.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chien, Hung-Chun. « Full-Phase Operation Transresistance-Mode Precision Full-Wave Rectifier Designs Using Single Operational Transresistance Amplifier ». Active and Passive Electronic Components 2019 (3 mars 2019) : 1–18. http://dx.doi.org/10.1155/2019/1584724.

Texte intégral
Résumé :
This study proposed the designs of two full-phase operation transresistance-mode (TRM) precision full-wave rectifiers. The first circuit consisted of a single operational transresistance amplifier (OTRA), four diodes, and a resistor. The second scheme was an OTRA combined with a full metal-oxide semiconductor field-effect transistor-based design, which is preferable for integrated circuit implementation because no passive components are used in the circuit topology. Based on our literature review, this is the first study that discussed a full-phase operation transresistance-mode precision full-wave rectifier consisting of a single OTRA and few passive components. In this paper, several previously reported precision full-wave rectifiers consisting of various active devices are first reviewed followed by the proposed OTRA-based transresistance-mode precision full-wave rectifiers and an analysis of nonideal effects. Furthermore, computer simulations and experimental results are presented to verify the validity of the proposed circuits, which were consistent with the theoretical predictions.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kumngern, Montree. « Precision Full-Wave Rectifier Using Two DDCCs ». Circuits and Systems 02, no 03 (2011) : 127–32. http://dx.doi.org/10.4236/cs.2011.23019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Petrović, Predrag B., Milan Vesković et Slobodan Đukić. « Voltage mode electronically tunable full-wave rectifier ». Journal of Electrical Engineering 68, no 1 (1 janvier 2017) : 61–67. http://dx.doi.org/10.1515/jee-2017-0008.

Texte intégral
Résumé :
Abstract The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ariga, T., et A. Ishiyama. « A two-phase full-wave superconducting rectifier ». IEEE Transactions on Magnetics 25, no 2 (mars 1989) : 1815–18. http://dx.doi.org/10.1109/20.92655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gift, Stephan J. G. « A high-performance full-wave rectifier circuit ». International Journal of Electronics 87, no 8 (août 2000) : 925–30. http://dx.doi.org/10.1080/002072100404587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Sahu, P. P., M. Singh et A. Baishya. « A Novel Versatile Precision Full-Wave Rectifier ». IEEE Transactions on Instrumentation and Measurement 59, no 10 (octobre 2010) : 2742–46. http://dx.doi.org/10.1109/tim.2010.2045539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Herraiz, S., L. Sainz et J. Pedra. « Behaviour of single-phase full-wave rectifier ». European Transactions on Electrical Power 13, no 3 (mai 2003) : 185–92. http://dx.doi.org/10.1002/etep.4450130307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Agrawal, Deepak, et Sudhanshu Maheshwari. « Current-Mode Precision Full-Wave Rectifier Circuits ». Circuits, Systems, and Signal Processing 36, no 11 (7 mars 2017) : 4293–308. http://dx.doi.org/10.1007/s00034-017-0531-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kamarudin, Kh, M. S. Ramli, A. W. SitiSufiah, N. F. Razali et S. A. Nordin. « Designation and Investigate of a Full-Wave Controller Rectifier (FWCR) for Effect Source Inductance for Full Wave Rectifier ». MATEC Web of Conferences 70 (2016) : 08002. http://dx.doi.org/10.1051/matecconf/20167008002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

YUCE, ERKAN, et HALIL ALPASLAN. « A CMOS CURRENT RECTIFIER CONFIGURATION SUITABLE FOR INTEGRATION ». Journal of Circuits, Systems and Computers 21, no 07 (novembre 2012) : 1250052. http://dx.doi.org/10.1142/s0218126612500521.

Texte intégral
Résumé :
In this paper, a CMOS-based one input-two output current-mode (CM) circuit structure for providing full-wave rectification and half-wave rectifications to clarify the theory is proposed. The suggested configuration has many important advantages such as dissipating very less power, employing reduced number of CMOS transistors, having high output impedance currents and without requiring any additional bias currents and voltages. In order to exhibit performance and effectiveness of the proposed topology, SPICE simulation results are given.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Raj, Niranjan, Sagar, Rajeev Kumar Ranjan, Bindu Priyadarshini et Nicu Bizon. « Electronically Tunable Full Wave Precision Rectifier Using DVCCTAs ». Electronics 10, no 11 (25 mai 2021) : 1262. http://dx.doi.org/10.3390/electronics10111262.

Texte intégral
Résumé :
This work presents a voltage mode scheme of a full-wave precision rectifier circuit using an analog building block differential voltage current conveyor transconductance amplifier (DVCCTA) including five NMOS transistors. The proposed design is essentially suited for low voltage and high-frequency input signals. The operation of the proposed rectifier design depends upon the region of operation of NMOS transistors. The output waveform of the presented rectifier design can be made electronically tunable by controlling the bias voltage. The functional correctness and verification of the presented design are performed using 0.25-µm TSMC technology under the supply voltage of ±1.5 V. The absence of a resistor leads to a minimal parasitic effect. To obtain further insight on the robustness of the circuit, a Monte Carlo simulation and corner analysis are also presented. The circuit is verified experimentally by incorporating a breadboard model with the help of commercially available ICs CA3080 (operational transconductance amplifier) and AD844AN (current feedback operational amplifier) and offers remarkable compliance with both theoretical and simulation outcomes. The presented design has been laid out on Cadence virtuoso, which consumes a chip area of 9044 µm2.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Monpapassorn, Adisak, Kobchai Dejhan et Fusak Cheevasuvit. « CMOS dual output current mode half-wave rectifier ». International Journal of Electronics 88, no 10 (octobre 2001) : 1073–84. http://dx.doi.org/10.1080/00207210110071242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

B. Petrović, Predrag. « A New Precision Peak Detector/Full-Wave Rectifier ». Journal of Signal and Information Processing 04, no 01 (2013) : 72–81. http://dx.doi.org/10.4236/jsip.2013.41009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Koton, Jaroslav, Kamil Vrba et Norbert Herencsar. « Voltage-mode full-wave rectifier based on DXCCII ». Analog Integrated Circuits and Signal Processing 81, no 1 (15 juillet 2014) : 99–107. http://dx.doi.org/10.1007/s10470-014-0363-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Reatti, A., M. K. Kazimierczuk et R. Redl. « Class E full-wave low dv/dt rectifier ». IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications 40, no 2 (1993) : 73–85. http://dx.doi.org/10.1109/81.219821.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Monpapassorn, Adisak. « Low output impedance dual CCII full-wave rectifier ». International Journal of Electronics 100, no 5 (mai 2013) : 648–54. http://dx.doi.org/10.1080/00207217.2012.720943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Toumazou, C., F. J. Lidgey et S. Chattong. « High frequency current conveyor precision full-wave rectifier ». Electronics Letters 30, no 10 (12 mai 1994) : 745–46. http://dx.doi.org/10.1049/el:19940539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Vats, Vipin B., et H. Parthasarathy. « A perturbation-based model for rectifier circuits ». Differential Equations and Nonlinear Mechanics 2006 (2006) : 1–13. http://dx.doi.org/10.1155/denm/2006/32675.

Texte intégral
Résumé :
A perturbation-theoretic analysis of rectifier circuits is presented. The governing differential equation of the half-wave rectifier with capacitor filter is analyzed by expanding the output voltage as a Taylor series with respect to an artificially introduced parameter in the nonlinearity of the diode characteristic as is done in quantum theory. The perturbation parameter introduced in the analysis is independent of the circuit components as compared to the method presented by multiple scales. The various terms appearing in the perturbation series are then modeled in the form of an equivalent circuit. This model is subsequently used in the analysis of full-wave rectifier. Matlab simulation results are included which confirm the validity of the theoretical formulations. Perturbation analysis acts a helpful tool in analyzing time-varying systems and chaotic systems.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Abbas, Mohammed A., Falah H. Hanoon et Lafy F. Al-Badry. « Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule ». Physics Letters A 382, no 8 (février 2018) : 608–12. http://dx.doi.org/10.1016/j.physleta.2017.12.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shulhin, A. L., et D. A. Losikhin. « The use of a full-wave amplifying rectifier without diodes on operational amplifiers in an automated testing system on a tensile testing machine ». Computer Modeling : Analysis, Control, Optimization 7, no 1 (2020) : 70–74. http://dx.doi.org/10.32434/2521-6406-2020-1-7-70-74.

Texte intégral
Résumé :
The article discusses the problem of transformation of measuring signal of differential transformer converter of universal testing machines for further processing by microprocessor controller. In order to automate the testing process, it is necessary to collect, process and transmit the measured data to an automated workplace using a microprocessor controller. Due to the fact that usually the secondary windings of the differential transformer converters produce an alternating voltage of very small magnitude, such a measurement signal cannot be processed with the help of modern microprocessor controllers without conversion. Since the analog-to-digital converter of the microprocessor controller cannot operate with alternating voltage, it becomes necessary to rectify and amplify the measuring signal. For low voltages (less than 0.6 V), the use of conventional resistor-diode rectifiers becomes impossible and there is a need for other methods of rectifying alternating current. It is proposed to use full-wave active rectifiers without diodes on operational amplifiers for conversion of the measuring signal of differential transformer converters, the main disadvantages of diode rectifiers and advantages of rectifiers on operational amplifiers are considered. The biggest advantage of a rectifier proposed for use in an automated testing system is the ability to simultaneously rectify and amplify the measurement signal with the required precision, allowing it to be processed by most modern microprocessor controllers. For the first time, an automated testing system on a tensile machine was developed using an active full-wave voltage rectifier on operational amplifiers without the use of diodes. The circuit shown in the article makes it possible to convert the signal of a differential transformer converter for further processing using the Arduino microcontroller platform. An amplifying active full-wave voltage rectifier without diodes on operational amplifiers can be used to modernize testing or measurement equipment containing a differential transformer transducer of a measuring signal. The developed electrical circuit of the rectifier was applied to automate the process of testing on the breaking machine of model P-0.5. Keywords: differential transformer converter, operational amplifier, rectifier, measuring signal converter, tensile testing machine, automated test system.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Deng, Tao, Laura B. Goetting, Junmin Hu et George M. Whitesides. « Microfabrication of half-wave rectifier circuits using soft lithography ». Sensors and Actuators A : Physical 75, no 1 (mai 1999) : 60–64. http://dx.doi.org/10.1016/s0924-4247(99)00045-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kumngern, Montree, Boonying Knobnob et Kobchai Dejhan. « High Frequency and High Precision CMOS Half-Wave Rectifier ». Circuits, Systems and Signal Processing 29, no 5 (28 avril 2010) : 815–36. http://dx.doi.org/10.1007/s00034-010-9186-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Vyas, Rushi, Sichong Li et Fadhel Ghannouchi. « Using 2.4 GHz load-side voltage standing waves to passively boost RF-DC voltage conversion in RF rectifier ». Wireless Power Transfer 6, no 2 (septembre 2019) : 113–25. http://dx.doi.org/10.1017/wpt.2019.12.

Texte intégral
Résumé :
AbstractA novel, dual-band, voltage-multiplying (RF-DC) rectifier circuit with load-tuned stages resulting in a 50 Ω input-impedance and high RF-DC conversion in 2.4 and 5.8 GHz bands for wireless energy-harvesting is presented. Its novelty is in the use of optimal-length transmission lines on the load side of the 4 half-wave rectifying stages within the two-stage voltage multiplier topology. Doing so boosts the rectifier's output voltage due to an induced standing-wave peak at each diode's input, and gives the rectifier a 50 Ω input-impedance without an external-matching-network in the 2.4 GHz band. Comparisons with other rectifiers show the proposed design achieving a higher DC output and better immunity to changing output loads for similar input power levels and load conditions. The second novelty of this rectifier is a tuned secondary feed that connects the rectifier's input to its second stage to give dual-band performance in the 5.8 GHz band. By tuning this feed such that the second stage and first stage reactances cancel, return-loss resonance in the 5.8 GHz band is achieved in addition to 2.4 GHz. Simulations and measurements of the design show RF-DC sensitivity of −7.2 and −3.7 dBm for 1.8V DC output, and better than 10 dB return-loss, in 2.4 and 5.8 GHz bands without requiring an external-matching-network.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Yildiz, Ali Bekir, et Ezgi Unverdi. « Simplified Harmonic Model for Full Wave Diode Rectifier Circuits ». Automatika 55, no 4 (janvier 2014) : 399–404. http://dx.doi.org/10.7305/automatika.2014.12.464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kumngern, M., et K. Dejhan. « High frequency and high precision CMOS full-wave rectifier ». International Journal of Electronics 93, no 3 (mars 2006) : 185–99. http://dx.doi.org/10.1080/00207210600562256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

SURAKAMPONTORN, W., S. JUTAVIRIYA et T. APAJINDA. « Dual translinear sinusoidal frequency doubler and full-wave rectifier ». International Journal of Electronics 65, no 6 (décembre 1988) : 1203–8. http://dx.doi.org/10.1080/00207218808945323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Qiuliang Wang, Luguang Yan et Changlian Yi. « Study of full-wave superconducting rectifier-type flux-pumps ». IEEE Transactions on Magnetics 32, no 4 (juillet 1996) : 2699–702. http://dx.doi.org/10.1109/20.511431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Petrović, Predrag Boško. « Realization of Electronically Controllable Current-Mode Full-wave Rectifier ». IETE Journal of Research 61, no 5 (30 mars 2015) : 517–25. http://dx.doi.org/10.1080/03772063.2015.1024178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

SURAKAMPONTORN, WANLOP, et VANCHAI RIEWRUJA. « Integrable CMOS sinusoidal frequency doubler and full-wave rectifier ». International Journal of Electronics 73, no 3 (septembre 1992) : 627–32. http://dx.doi.org/10.1080/00207219208925697.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chang, Cheng-Chieh, et Shen-Iuan Liu. « Current-mode full-wave rectifier and vector summation circuit ». Electronics Letters 36, no 19 (2000) : 1599. http://dx.doi.org/10.1049/el:20001180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Başak, Muhammed Emin, et Fırat Kaçar. « Realization of current-mode fully integrated full-wave rectifier ». AEU - International Journal of Electronics and Communications 82 (décembre 2017) : 45–51. http://dx.doi.org/10.1016/j.aeue.2017.07.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Babacan, Yunus. « Ultra-Low voltage-power DTMOS based full-wave rectifier ». AEU - International Journal of Electronics and Communications 91 (juillet 2018) : 18–23. http://dx.doi.org/10.1016/j.aeue.2018.04.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Safari, L., G. Barile, V. Stornelli et G. Ferri. « A new versatile full wave rectifier using voltage conveyors ». AEU - International Journal of Electronics and Communications 122 (juillet 2020) : 153267. http://dx.doi.org/10.1016/j.aeue.2020.153267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sainz, Luis, Joaquín Pedra et Juan José Mesas. « Single-phase full-wave rectifier study with experimental measurements ». Electric Power Systems Research 77, no 3-4 (mars 2007) : 339–51. http://dx.doi.org/10.1016/j.epsr.2006.03.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sainz, Luis, Juan Jose Mesas et Albert Ferrer. « Three-phase full-wave rectifier study with experimental measurements ». Electric Power Systems Research 79, no 4 (avril 2009) : 521–30. http://dx.doi.org/10.1016/j.epsr.2008.08.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Li, Wenchao, Ying Zhang, Zehui Liu, Danni Luo, Youlong Wang et Yaohong Sun. « Research on Self-exciting Air-core Pulsed Alternator Considering Armature Reaction ». E3S Web of Conferences 252 (2021) : 02002. http://dx.doi.org/10.1051/e3sconf/202125202002.

Texte intégral
Résumé :
Compared with the traditional synchronous generator with iron core structure, air-core pulse alternator usually adopts self-excitation to establish a higher field current to meet its demand for high flux density. In this paper, the topology of the self-exciting rectifier is determined to be the full bridge rectifier by discussing the respective application scope of the full bridge and the half wave rectifier. Considering the armature reaction, the self-excitation process and the coupling relationship between the field winding and the armature winding are analyzed. According to the commutation overlap angle, the equivalent circuits of different states are carried out, and the instantaneous expressions of field current and armature current are deduced, which lays a foundation for the following phase control research.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Guerra-Pulido, Jaime O. « In-depth analysis of the capacitive filtered half wave rectifier ». Computer Applications in Engineering Education 27, no 1 (3 octobre 2018) : 236–48. http://dx.doi.org/10.1002/cae.22071.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wang, Jingfang, Xuliang Yao, Xu Gao et Shiyan Yang. « Harmonic Reduction for 12-Pulse Rectifier Using Two Auxiliary Single-Phase Full-Wave Rectifiers ». IEEE Transactions on Power Electronics 35, no 12 (décembre 2020) : 12617–22. http://dx.doi.org/10.1109/tpel.2020.2992592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie