Littérature scientifique sur le sujet « High-Precision Mapping »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « High-Precision Mapping ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "High-Precision Mapping"
Tu, Xinyuan, Jian Zhang, Runhao Luo, Kai Wang, Qingji Zeng, Yu Zhou, Yao Yu et Sidan Du. « Reconstruction of High-Precision Semantic Map ». Sensors 20, no 21 (3 novembre 2020) : 6264. http://dx.doi.org/10.3390/s20216264.
Texte intégralWang, Qingshan, Jun Zhang, Yuansheng Liu et Xinchen Zhang. « High-Precision and Fast LiDAR Odometry and Mapping Algorithm ». Journal of Advanced Computational Intelligence and Intelligent Informatics 26, no 2 (20 mars 2022) : 206–16. http://dx.doi.org/10.20965/jaciii.2022.p0206.
Texte intégralLiu, Cong, Licheng Wang, Xiaopeng Liu et Zhihong Xu. « Iterative mapping for high-precision calibration and displacement measurements ». Optik 248 (décembre 2021) : 168195. http://dx.doi.org/10.1016/j.ijleo.2021.168195.
Texte intégralHaas, Benedikt, Candice Thomas, Pierre-Henri Jouneau, Nicolas Bernier, Tristan Meunier, Philippe Ballet et Jean-Luc Rouvière. « High precision strain mapping of topological insulator HgTe/CdTe ». Applied Physics Letters 110, no 26 (26 juin 2017) : 263102. http://dx.doi.org/10.1063/1.4989822.
Texte intégralIwakiri, Yuya, et Toyohisa Kaneko. « High-precision texture mapping on 3D free-form objects ». Electronics and Communications in Japan (Part II : Electronics) 89, no 9 (2006) : 24–32. http://dx.doi.org/10.1002/ecjb.20302.
Texte intégralCruz, Isabel F., Matteo Palmonari, Federico Caimi et Cosmin Stroe. « Building linked ontologies with high precision using subclass mapping discovery ». Artificial Intelligence Review 40, no 2 (9 novembre 2012) : 127–45. http://dx.doi.org/10.1007/s10462-012-9363-x.
Texte intégralBo, Zheng, Kaichang Di, Bin Liu, Jia Wang, Zhaoqin Liu, Xin Xin, Ziqing Cheng et Jinkuan Yin. « High-Precision Registration of Lunar Global Mapping Products Based on Spherical Triangular Mesh ». Remote Sensing 14, no 6 (16 mars 2022) : 1442. http://dx.doi.org/10.3390/rs14061442.
Texte intégralMostafa, M. M. R. « ACCURACY ASSESSMENT OF PROFESSIONAL GRADE UNMANNED SYSTEMS FOR HIGH PRECISION AIRBORNE MAPPING ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W6 (24 août 2017) : 257–61. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w6-257-2017.
Texte intégralLiu, Y., B. Liu, B. Xu, Z. Liu, K. Di et J. Zhou. « High Precision Topographic Mapping at Chang'E-3 Landing Site with Multi-Source Data ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-4 (23 avril 2014) : 157–61. http://dx.doi.org/10.5194/isprsarchives-xl-4-157-2014.
Texte intégralYoon, Dasol, Harikrishnan K.P., Yu-Tsun Shao et David A. Muller. « High-Speed, High-Precision, and High-Throughput Strain Mapping with Cepstral Transformed 4D-STEM Data ». Microscopy and Microanalysis 28, S1 (22 juillet 2022) : 796–98. http://dx.doi.org/10.1017/s1431927622003592.
Texte intégralThèses sur le sujet "High-Precision Mapping"
Stoven-Dubois, Alexis. « Robust Crowdsourced Mapping for Landmarks-based Vehicle Localization ». Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC116.
Texte intégralThe deployment of intelligent and connected vehicles, equipped with increasingly sophisticated equipment, and capable of sharing accurate positions and trajectories, is expected to lead to a substantial improvement of road safety and traffic efficiency. For this safety gain to become effective, vehicles will have to be accurately geo-positioned in a common reference, with an error up to a few decimeters [1]. To achieve this, they will be able to count on a variety of embedded sensors, such as GNSS (Global Navigation Satellite Systems) receivers, as well as additional proprioceptive and perception sensors. Nevertheless, in order to guarantee accurate positioning in all conditions, including in dense zones where GNSS signals can get degraded by multi-path effects, it is expected that vehicles will need to use precise maps of the environment to support their localization algorithms.To build maps of the main highways, major automotive actors have made use of dedicated fleets of vehicles equipped with high-end sensors. Because of the associated high operational costs, they have been operating a limited number of vehicles, and remain unable to provide live updates of the maps and to register entire road networks. Crowdsourced mapping represents a cost-effective solution to this problem, and has been creating interest among automotive players. It consists in making use of measurements retrieved by multiple production vehicles equipped with standard sensors in order to build a map of landmarks. Nevertheless, while this approach appears promising, its real potential to build an accurate map of landmarks and maintain it up-to-date remains to be assessed in realistic, long-term scenarios.In this thesis, in a first time, we propose a crowdsourced mapping solution based on triangulation optimization, and evaluate it using field-tests. The result analysis shows the potential of crowdsourced mapping to take advantage from measurements issued by multiple vehicles. On the other hand, it also indicates some critical limitations associated with triangulation optimization.Therefore, in a second time, we propose another crowdsourced mapping solution based on graph optimization, and we introduce different approaches to include and update the map within the optimization, which correspond to different trade-offs between the map quality and computational scalability. Simulation experiments are conducted in order to compare the different approaches. The results enable to identify the most efficient one, and to assert that it provides a scalable solution for crowdsourced mapping.The robustness of this solution to various types of noises, such as auto-correlated and biased noises, is then evaluated using extended simulation tests. The results analysis show its ability to build an accurate map of landmarks in various noises conditions, making use of measurements retrieved by multiple vehicles. Subsequently, field-tests are performed to confirm the results obtained in simulation, and draw conclusions both from a theoretical and practical viewpoint. Finally, the capacity of our crowdsourced mapping solution to increase the localization capabilities of vehicles is evaluated in simulation. The results show the effectiveness of the proposed approach to improve positioning performances in various conditions, while also pointing out the importance of providing a map with a sufficient density of landmarks
Colley, Richard T. III. « Development of a Machine Vision System for Mass Flow Sensing and High-Resolution Mapping of Granular Fertilizer Application ». The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543564969065918.
Texte intégralPelcat, Yann S. « Soil landscape characterization of crop stubble covered fields using Ikonos high resolution panchromatic images ». Thesis, Winnipeg : University of Manitoba, 2006. http://www.collectionscanada.ca/obj/s4/f2/dsk3/MWU/TC-MWU-224.pdf.
Texte intégralA thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science, Department of Soil Science. Includes bibliographical references.
Livres sur le sujet "High-Precision Mapping"
Michel, Christoph M., et Bin He. EEG Mapping and Source Imaging. Sous la direction de Donald L. Schomer et Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0045.
Texte intégralChapitres de livres sur le sujet "High-Precision Mapping"
Hanning, Tobias. « Modelling the camera mapping ». Dans High Precision Camera Calibration, 5–26. Wiesbaden : Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-9830-2_2.
Texte intégralGriffiths, Hugh. « Advances in Radar Altimetry Techniques for Topographic Mapping ». Dans High Precision Navigation, 251–60. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_18.
Texte intégralWehr, Aloysius. « 3D-Mapping by a Semiconductor Laser Scanner, Description of an Experimental Setup ». Dans High Precision Navigation, 469–89. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_35.
Texte intégralHwang, C. S., W. C. Chou, J. H. Huang, M. Y. Lin, Tzuchu Chang et P. K. Tseng. « High Precision Automatic Magnetic Field Mapping System for the Dipole Magnet ». Dans 11th International Conference on Magnet Technology (MT-11), 291–96. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0769-0_50.
Texte intégralTu, Zhiming, Hao Fu et Zhenping Sun. « LiDAR-Based High-Precision Mapping and GNSS-Denied Localiztion for UAV ». Dans Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022), 2977–87. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0479-2_275.
Texte intégralGuo, Peng, Qingshan Wang, Zhan Cao et Haipeng Xia. « High Precision Odometer and Mapping Algorithm Based on Multi Lidar Fusion ». Dans Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022), 40–50. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0923-0_5.
Texte intégralLi, Jindong. « Design and Analysis of High-Precision Stereo Surveying and Mapping Satellite System ». Dans Space Science and Technologies, 227–63. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4871-0_6.
Texte intégralBordatchev, E. V. « Analysis and Mapping of the Dynamic Performance of High-Precision Motion Systems ». Dans Integrated Design and Manufacturing in Mechanical Engineering, 255–62. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9966-5_30.
Texte intégralJing, Huang, Amit Yadav, Asif Khan et Dakshina Yadav. « A High-Precision Pixel Mapping Method for Image-Sensitive Areas Based on SVR ». Dans Advances in Intelligent Systems and Computing, 35–43. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6584-7_4.
Texte intégralWan, Wenhui, Zhaoqin Liu et Kaichang Di. « A New Method for Real-Time High-Precision Planetary Rover Localization and Topographic Mapping ». Dans Communications in Computer and Information Science, 215–22. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37149-3_26.
Texte intégralActes de conférences sur le sujet "High-Precision Mapping"
Doerry, Armin W. « High-precision stereoscopic 3D mapping accuracy ». Dans Aerospace/Defense Sensing, Simulation, and Controls, sous la direction de Edmund G. Zelnio. SPIE, 2001. http://dx.doi.org/10.1117/12.438240.
Texte intégralSonneland, L. « High precision fluid mapping in compacting reservoirs ». Dans EAGE/SEG Research Workshop on Reservoir Rocks - Understanding reservoir rock and fluid property distributions - measurement, modelling and applications. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609.201406713.
Texte intégralGordon, Jonathan, Jerry Hobbs, Jonathan May et Fabrizio Morbini. « High-Precision Abductive Mapping of Multilingual Metaphors ». Dans Proceedings of the Third Workshop on Metaphor in NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2015. http://dx.doi.org/10.3115/v1/w15-1406.
Texte intégralPrexl, Jonathan, Sudipan Saha et Michael Schmitt. « High Precision Mapping Of Building Changes Using Sentinel-2 ». Dans IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2023. http://dx.doi.org/10.1109/igarss52108.2023.10283173.
Texte intégralWang, Fei, et Miaole Hou. « Virtual restoration of Buddha statues based on high-precision 3D models ». Dans Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), sous la direction de Tarun Kumar Lohani. SPIE, 2023. http://dx.doi.org/10.1117/12.2668118.
Texte intégralYang, Yue, Zhuqing Yuan, Shuangcai Liu, Wenyu Sun, Yongpan Liu et Sheng Zhang. « Deep compression for real-time high-precision SAR image ship detection ». Dans 2023 4th International Conference on Geology, Mapping and Remote Sensing (ICGMRS 2023), sous la direction de Yi Wang et Tao Chen. SPIE, 2024. http://dx.doi.org/10.1117/12.3021068.
Texte intégralwan, haoming, panpan tang, shi bai et xiaoyan luo. « High-precision mapping of smallholder rapeseed combining UAV imagery and deep learning ». Dans 2023 4th International Conference on Geology, Mapping and Remote Sensing (ICGMRS 2023), sous la direction de Yi Wang et Tao Chen. SPIE, 2024. http://dx.doi.org/10.1117/12.3021008.
Texte intégralDing, Shulei, Zhuolu Hou, Jiaxun Jiang, Li Zhang et Yuxuan Liu. « High-Precision Geometric Positioning of Optical Satellite Images Assisted by LiDAR Data ». Dans 2023 5th International Conference on Geoscience and Remote Sensing Mapping (GRSM). IEEE, 2023. http://dx.doi.org/10.1109/grsm60169.2023.10425585.
Texte intégralBlank, Sebastian, Yantao Shen, Ning Xi, Chi Zhang et Uchechukwu C. Wejinya. « High precision PSD guided robot localization : Design, mapping, and position control ». Dans 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iros.2007.4399621.
Texte intégralHe, Chunjing, Angze Li, Lirong Qiu et Weiqian Zhao. « Three-dimensional high-precision mineral mapping using confocal controlled LIBS microscope ». Dans Advanced Optical Imaging Technologies V, sous la direction de P. Scott Carney, Xiao-Cong Yuan et Kebin Shi. SPIE, 2023. http://dx.doi.org/10.1117/12.2655745.
Texte intégralRapports d'organisations sur le sujet "High-Precision Mapping"
Gardner, J. N., A. Lavine, D. Vaniman et G. WoldeGabriel. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory. Office of Scientific and Technical Information (OSTI), juin 1998. http://dx.doi.org/10.2172/661496.
Texte intégralLee, W. S., Victor Alchanatis et Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, janvier 2014. http://dx.doi.org/10.32747/2014.7598158.bard.
Texte intégralDudley, J. P., et S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.
Texte intégralSchmidt, Elizabeth. Shoreline change at Fort Matanzas National Monument : 2020–2021 data summary. National Park Service, janvier 2022. http://dx.doi.org/10.36967/nrds-2290193.
Texte intégral