Littérature scientifique sur le sujet « High pressure gas Adsorption »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « High pressure gas Adsorption ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "High pressure gas Adsorption"
Chen, Liwei, Mingzhen Zhao, Xiaohua Li et Yuan Liu. « Impact research of CH4 replacement with CO2 in hydrous coal under high pressure injection ». Mining of Mineral Deposits 16, no 1 (30 mars 2022) : 121–26. http://dx.doi.org/10.33271/mining16.01.121.
Texte intégralVermesse, J., D. Vidal et P. Malbrunot. « Gas Adsorption on Zeolites at High Pressure ». Langmuir 12, no 17 (janvier 1996) : 4190–96. http://dx.doi.org/10.1021/la950283m.
Texte intégralGiacobbe, F. W. « A high‐pressure volumetric gas adsorption system ». Review of Scientific Instruments 62, no 9 (septembre 1991) : 2186–92. http://dx.doi.org/10.1063/1.1142336.
Texte intégralJia, Bao, Jyun-Syung Tsau et Reza Barati. « Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales ». SPE Journal 23, no 04 (30 mai 2018) : 1452–68. http://dx.doi.org/10.2118/191121-pa.
Texte intégralEkundayo, Jamiu M., Reza Rezaee et Chunyan Fan. « Measurement of gas contents in shale reservoirs – impact of gas density and implications for gas resource estimates ». APPEA Journal 61, no 2 (2021) : 606. http://dx.doi.org/10.1071/aj20177.
Texte intégralHu, Ke, et Helmut Mischo. « Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale ». Adsorption 28, no 1-2 (février 2022) : 27–39. http://dx.doi.org/10.1007/s10450-021-00350-8.
Texte intégralLiu, Zhen, Qingbo Gu, He Yang, Jiangwei Liu, Guoliang Luan, Peng Hu et Zehan Yu. « Gas–Water Two-Phase Displacement Mechanism in Coal Fractal Structures Based on a Low-Field Nuclear Magnetic Resonance Experiment ». Sustainability 15, no 21 (30 octobre 2023) : 15440. http://dx.doi.org/10.3390/su152115440.
Texte intégralWynnyk, Kyle G., Behnaz Hojjati, Payman Pirzadeh et Robert A. Marriott. « High-pressure sour gas adsorption on zeolite 4A ». Adsorption 23, no 1 (18 novembre 2016) : 149–62. http://dx.doi.org/10.1007/s10450-016-9841-6.
Texte intégralGuo, Wenjing, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu et Huixiao Hong. « Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials ». Nanomaterials 12, no 19 (27 septembre 2022) : 3376. http://dx.doi.org/10.3390/nano12193376.
Texte intégralCheng, De Zhu, Ai Ling Du et Ai Qin Du. « The Influence of Coal Adsorbing Methane and Carbon Dioxide on Gas Outburst ». Advanced Materials Research 1049-1050 (octobre 2014) : 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.101.
Texte intégralThèses sur le sujet "High pressure gas Adsorption"
Navaei, Milad. « Quartz crystal microbalance adsorption apparatus for high pressure gas adsorption measurements in nanomaterials ». Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41057.
Texte intégralDe, Angelis Giacomo. « Modeling of a differential volumetric system for high pressure gas adsorption ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23313/.
Texte intégralTang, Xu. « Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74237.
Texte intégralPh. D.
Ceteroni, Ilaria. « High-pressure adsorption differential volumetric apparatus (HP-ADVA) for accurate equilibrium measurements ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22274/.
Texte intégralBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause et Joaquín Silvestre-Albero. « Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-221847.
Texte intégralBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause et Joaquín Silvestre-Albero. « Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons ». Royal Society of Chemistry, 2016. https://tud.qucosa.de/id/qucosa%3A30232.
Texte intégralMinhas, Rizwan. « Spin Crossover (SCO) Hofmann clathrate with switchable property, for the design of a new gas storage/separation material ». Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3049.
Texte intégralMetal Organic Frameworks (MOFs) have been identified in recent years as advanced alternatives for gas storage, molecular separations, sensing or catalysis, thanks to their remarkable host-guest properties and versatility. More recently, the combination of the ferrous spin-crossover (SCO) with MOFs has made it possible to obtain switchable porous architectures where the electron spin of the iron(II) metal centers can be controlled by different stimuli. This work focuses on one of these SCO MOFs, also called Hofmann clathrates, (FeNi[CN]4.Pyrazine) with a switchable property that is studied here for its gas storage and separation properties.This material is first synthesized using an environmentally friendly mixing of reagents, employing iron and nickel salts with pyrazine as the organic linker. The resulting microcrystalline powder is then characterized via different experimental techniques including nitrogen and argon porosimetry, thermogravimetry analysis (TGA), X-ray diffraction, scanning electron microscopy (SEM), and IR spectroscopy, thus confirming the successful synthesis of this material.One of the aims of this research was to design and construct a novel homemade volumetric setup to study the high-pressure adsorption of pure gases and mixtures allowing to simultaneously visualize the sample by means of a camera attached near the sapphire window of the measuring cell. First, high pressure (up to 7 MPa) pure gases (CO2, CH4 & N2) adsorption in (FeNi[CN]4.Pz) were conducted at various temperatures and results have shown an interesting structural flexibility of this MOF during CO2 adsorption, whatever the initial spin state of the material. These structural transitions upon CO2 adsorption were then observed using in-situ vibrational spectroscopy techniques: FTIR and Raman spectroscopy. Moreover, it was shown that the SCO property of this material is well associated with the changes in color of the sample itself showing that the combined adsorption/image analysis technique is a useful tool to investigate the SCO change due to adsorption for this type of material.The adsorption measurement of gas mixtures could be achieved by utilizing the same homemade manometric setup coupled with an IR gas analyzer. Experimental data demonstrated that (FeNi[CN]4.Pz) has a preferential adsorption for CO2 over CH4, making it a suitable candidate for CO2/CH4 separation in some conditions. It was shown that this preferential adsorption of CO2 is enhanced by the structural flexibility of the material.In addition to these experimental results, modeling of both equilibrium adsorption, kinetics of adsorption and selectivity was performed and compared to the measured properties.In summary, this thesis presents a comprehensive study of (FeNi[CN]4.Pz), highlighting its synthesis, characterization, structural flexibility, and exceptional performance in CO2/CH4 as well as CO2/N2 separations, highlighted by both experimental and theoretical approaches
Ngeleka, Tholakele Prisca. « Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka ». Thesis, North-West University, 2005. http://hdl.handle.net/10394/1416.
Texte intégralThesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
Ngeleka, Tholakele Prisca. « An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka ». Thesis, North-West University, 2008. http://hdl.handle.net/10394/4108.
Texte intégralThesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
Mutasim, Z. Z. « Separation of gas mixtures by pressure swing adsorption ». Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379811.
Texte intégralLivres sur le sujet "High pressure gas Adsorption"
United States. National Aeronautics and Space Administration., dir. Ceramic high pressure gas path seal. Lynn, MA : GE Aircraft Engines, 1987.
Trouver le texte intégralL, Laganelli A., et NASA Glenn Research Center, dir. High pressure regenerative turbine engine : 21st century propulsion. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2001.
Trouver le texte intégralL, Laganelli A., et NASA Glenn Research Center, dir. High pressure regenerative turbine engine : 21st century propulsion. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2001.
Trouver le texte intégralHume, H. B. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay. Pinawa, Manitoba : Whitshell Laboratories, 1997.
Trouver le texte intégralPerryman, Adrian Colin. An investigation of catalyst preparative methods and a study of high pressure co adsorption. Uxbridge : Brunel University, 1992.
Trouver le texte intégralMorgan, G. J. High pressure gas permeation and liquid diffusion studies of Coflon and Tefzel thermoplastics. Austin, Tex : [Texas Research Institute, 1997.
Trouver le texte intégralFalcini, Mark R. A. A study of gas phase ion chemistry using high pressure mass spectrometry. [s.l.] : typescript, 1992.
Trouver le texte intégralJ, Locke Randy, et NASA Glenn Research Center, dir. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 1999.
Trouver le texte intégralJ, Locke Randy, et NASA Glenn Research Center, dir. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 1999.
Trouver le texte intégralJ, Locke Randy, et NASA Glenn Research Center, dir. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 1999.
Trouver le texte intégralChapitres de livres sur le sujet "High pressure gas Adsorption"
Chou, Cheng-tung, Yu-Hau Shih, Yu-Jie Huang et Hong-sung Yang. « Separation of Carbon Dioxide from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature ». Dans Advances in Intelligent Systems and Computing, 157–69. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11457-6_11.
Texte intégralBräuer, P., M. Salem, M. v. Szombathely, M. Heuchel, P. Halting et M. Jaroniec. « Problems Associated with Thermodynamic Analysis of Gas-Solid Adsorption Isotherms Measured at High Pressures ». Dans The Kluwer International Series in Engineering and Computer Science, 101–8. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_11.
Texte intégralMartin, J. R., C. F. Gottzmann, F. Notaro et H. A. Stewart. « Gas Separation by Pressure Swing Adsorption ». Dans Advances in Cryogenic Engineering, 1071–86. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_120.
Texte intégralKuhs, W. F. « The High Pressure Crystallography of Gas Hydrates ». Dans High-Pressure Crystallography, 475–94. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2102-2_29.
Texte intégralSchröter, H. J., et H. Jüntgen. « Gas Separation by Pressure Swing Adsorption Using Carbon Molecular Sieves ». Dans Adsorption : Science and Technology, 269–83. Dordrecht : Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2263-1_15.
Texte intégralZhang, Bao, Xiaotong Yu, Hongtao Jing, Xuesong Wang, Xiang Si et Dabin Fan. « Annular pressure evaluation of high temperature high pressure gas well ». Dans Proceedings of the 2023 9th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2023), 443–50. Dordrecht : Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-415-0_47.
Texte intégralSchmidt, Jürgen. « Sizing of High-Pressure Safety Valves for Gas Service ». Dans Industrial High Pressure Applications, 369–89. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652655.ch15.
Texte intégralRiedel, Hermann. « Cavity Nucleation Assisted by Internal Gas Pressure ». Dans Fracture at High Temperatures, 131–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82961-1_9.
Texte intégralde Groot, J. J., et J. A. J. M. van Vliet. « Influence of a Buffer Gas on Discharge Properties ». Dans The High-Pressure Sodium Lamp, 128–69. London : Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-09196-6_5.
Texte intégralCzepirski, Leszek, Barbara Łaciak et Stanisław Hołda. « Analysis of High-Pressure Adsorption Equilibria and Kinetics ». Dans The Kluwer International Series in Engineering and Computer Science, 219–26. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_26.
Texte intégralActes de conférences sur le sujet "High pressure gas Adsorption"
Ojong, Ojong Elias, Preniyobo Diepriye Benibo, Fidelis Ibiang Abam et Silas Shamaye Samuel. « Enhancing Carbon (iv) Oxide Adsorption from Flue Gas Mixture at Elevated Temperature Using Composite of Nanoparticles ». Dans Africa International Conference on Clean Energy and Energy Storage, 279–89. Switzerland : Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-3cwdqg.
Texte intégralChotchuangchutchaval, Thana, Pramot Wongnoopanao, Sarayut Kleepbua, Sitthichai Sarannat, Thossaporn Kaewwichit, Naratip Sangsai, Sittichai Limrungruengrat et Nathapong Sukhawipat. « High-Efficiency Oxygen Production Through Autotuned Pressure Swing Adsorption Technology ». Dans 2024 Research, Invention, and Innovation Congress : Innovative Electricals and Electronics (RI2C), 334–38. IEEE, 2024. https://doi.org/10.1109/ri2c64012.2024.10784397.
Texte intégralTsau, Jyun-Syung, Reza Ghahfarokhi Barati, Jose Zaghloul, Mubarak M. Alhajeri, Kyle Bradford et Brian Nicoud. « Experimental Investigation of High Pressure, High Temperature (HPHT) Adsorption of Methane and Natural Gas on Shale Gas Samples ». Dans ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210981-ms.
Texte intégralMURATA, K., et K. KANEKO. « DETERMINATION OF THE INTERFACE BETWEEN GAS AND ADSORBED PHASES IN HIGH PRESSURE GAS ADSORPTION ». Dans Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0063.
Texte intégralCZEPIRSKI, L., et B. ŁACIAK. « INTERPRETATION OF HIGH - PRESSURE GAS ADSORPTION EQUILIBRIUM AND KINETIC DATA FOR ACTIVE CARBONS ». Dans Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0033.
Texte intégralKumar Raman, Senthil. « Fatigue Analysis of a Pressure Swing Adsorption Vessel ». Dans ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-107586.
Texte intégralHe, Min, Zaoxiao Zhang et Guangxu Cheng. « The Adsorption Study of Hydrogen on Iron and Vanadium ». Dans ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65582.
Texte intégral« Carbon Dioxide Capture from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature ». Dans Special Session on Applications of Modeling and Simulation to Climatic Change and Environmental Sciences. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004624705290536.
Texte intégralWang, Jinjie, Qi Hua Ng, Hon Chung Lau et Ludger Paul Stubbs. « Experimental Study on Enhanced Shale Gas Recovery by Competitive Adsorption of CO-CH Under High-Temperature, High-Pressure Conditions ». Dans Offshore Technology Conference Asia. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30270-ms.
Texte intégralHedzyk, Nazarii, et Oleksandr Kondrat. « Low-Permeable Reservoirs as High Potential Assets for EGR ». Dans SPE Eastern Europe Subsurface Conference. SPE, 2021. http://dx.doi.org/10.2118/208555-ms.
Texte intégralRapports d'organisations sur le sujet "High pressure gas Adsorption"
George. PR-015-10600-R01 Proposed Sampling Methods for Supercritical Natural Gas Streams. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), juillet 2010. http://dx.doi.org/10.55274/r0010981.
Texte intégralNygren, David Robert, David Robert Nygren et Ben Jones. High Pressure Xenon Gas TPC Development. Office of Scientific and Technical Information (OSTI), juillet 2018. http://dx.doi.org/10.2172/1504727.
Texte intégralDennis G. Whyte. Disruption mitigation using high pressure gas jets. Office of Scientific and Technical Information (OSTI), octobre 2007. http://dx.doi.org/10.2172/917556.
Texte intégralMohayai, Tanaz. High-Pressure Gas TPC for DUNE Near Detector. Office of Scientific and Technical Information (OSTI), décembre 2018. http://dx.doi.org/10.2172/1524814.
Texte intégralde Bruijn, T. J. W., J. D. Chase et W. H. Dawson. Gas holdup in a tubular reactor at high pressure. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/302663.
Texte intégralGiokaris, N., Konstantin Goulianos, D. Anderson, S. Cihangir, A. Para, J. Zimmerman, D. Carlsmith et al. High pressure sampling gas calorimetry for the SDC calorimeter. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/1847368.
Texte intégralWuest, C. R., et C. D. Hendricks. A control system for maintaining high stability in gas pressure. Office of Scientific and Technical Information (OSTI), septembre 1987. http://dx.doi.org/10.2172/5673903.
Texte intégralBlander, M., L. Unger, A. Pelton et G. Eriksson. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas. Office of Scientific and Technical Information (OSTI), mai 1994. http://dx.doi.org/10.2172/10144532.
Texte intégralFielder, Robert, Matthew Palmer, Wing Ng, Matthew Davis et Aditya Ringshia. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications. Fort Belvoir, VA : Defense Technical Information Center, décembre 2004. http://dx.doi.org/10.21236/ada429586.
Texte intégralNaber, Jeffrey D. HIGH BRAKE MEAN EFFECTIVE PRESSURE AND HIGH EFFICIENCY MICRO PILOT IGNITION NATURAL GAS ENGINE. Office of Scientific and Technical Information (OSTI), février 2020. http://dx.doi.org/10.2172/1605097.
Texte intégral