Articles de revues sur le sujet « HLA knockout »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « HLA knockout ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
McCarty, Todd M., Zhiwei Yu, Xiping Liu, Don J. Diamond, and Joshua D. I. Ellenhorn. "An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice." Annals of Surgical Oncology 5, no. 1 (1998): 93–99. http://dx.doi.org/10.1007/bf02303770.
Texte intégralSuzuki, Daisuke, Naoshi Sugimoto, Norihide Yoshikawa, et al. "Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal Perfect Rejection Profiles for Allotransfusion." Blood 128, no. 22 (2016): 3841. http://dx.doi.org/10.1182/blood.v128.22.3841.3841.
Texte intégralKwon, Yoo-Wook, Hyo-Suk Ahn, Jin-Woo Lee, et al. "HLA DR Genome Editing with TALENs in Human iPSCs Produced Immune-Tolerant Dendritic Cells." Stem Cells International 2021 (May 20, 2021): 1–14. http://dx.doi.org/10.1155/2021/8873383.
Texte intégralZha, Shijun, Johan Chin-Kang Tay, Sumin Zhu, Zhendong Li, Zhicheng Du та Shu Wang. "Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells". Cell Transplantation 29 (1 січня 2020): 096368972096552. http://dx.doi.org/10.1177/0963689720965529.
Texte intégralKarkischenko, V. N., A. G. Berzina, I. A. Pomytkin, et al. "Immune Response in HLA-A*02:01 Transgenic Humanized Mice to the Introduction of Horse IgG Antigen." Journal Biomed 20, no. 2 (2024): 45–52. http://dx.doi.org/10.33647/2074-5982-20-2-45-52.
Texte intégralRivera González, Lorena, Yaritza Inostroza-Nieves, Alexandra Lozano, et al. "Endothelin-1 Regulates Molecules of the Major Histocompatibility Complex: Role in Sickle Cell Disease." Blood 128, no. 22 (2016): 3638. http://dx.doi.org/10.1182/blood.v128.22.3638.3638.
Texte intégralVeldman, Johanna, Lydia Visser, Magdalena Huberts-Kregel, et al. "Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58." Blood 136, no. 21 (2020): 2437–41. http://dx.doi.org/10.1182/blood.2020005546.
Texte intégralChen, Liye, Hui Shi, Jack Yuan, and Paul Bowness. "Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression." Annals of the Rheumatic Diseases 76, no. 3 (2016): 593–601. http://dx.doi.org/10.1136/annrheumdis-2016-209512.
Texte intégralTorikai, Hiroki, Andreas Reik, Carrie Yuen, et al. "HLA and TCR Knockout by Zinc Finger Nucleases: Toward “off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies." Blood 116, no. 21 (2010): 3766. http://dx.doi.org/10.1182/blood.v116.21.3766.3766.
Texte intégralLegut, Mateusz, Garry Dolton, Afsar Ali Mian, Oliver G. Ottmann, and Andrew K. Sewell. "CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells." Blood 131, no. 3 (2018): 311–22. http://dx.doi.org/10.1182/blood-2017-05-787598.
Texte intégralCroom-Perez, Tayler J., Liza D. Robles-Carrillo, Md Faqrul Hasan, and Alicja J. Copik. "Abstract 2910: NKG2A suppression enhances the function of primary human Natural Killer cells." Cancer Research 83, no. 7_Supplement (2023): 2910. http://dx.doi.org/10.1158/1538-7445.am2023-2910.
Texte intégralKrco, Christopher J., Shohei Watanabe, Jerry Harders, Marie M. Griffths, Harvinder Luthra, and Chella S. David. "Identification of T Cell Determinants on Human Type II Collagen Recognized by HLA-DQ8 and HLA-DQ6 Transgenic Mice." Journal of Immunology 163, no. 3 (1999): 1661–65. http://dx.doi.org/10.4049/jimmunol.163.3.1661.
Texte intégralNeeno, T., C. J. Krco, J. Harders, J. Baisch, S. Cheng, and C. S. David. "HLA-DQ8 transgenic mice lacking endogenous class II molecules respond to house dust allergens: identification of antigenic epitopes." Journal of Immunology 156, no. 9 (1996): 3191–95. http://dx.doi.org/10.4049/jimmunol.156.9.3191.
Texte intégralKarkischenko, V. N., V. A. Ezerskiy, E. M. Koloskova та M. S. Nesterov. "Preparation of Differentiated Recombinant Human β2-Microglobulin and Mouse β2-Microglobulin Proteins for its Detection in Class I HLA Chimeric Molecules". Journal Biomed 20, № 2 (2024): 21–31. http://dx.doi.org/10.33647/2074-5982-20-2-21-31.
Texte intégralUreta-Vidal, Abel, Hüseyin Firat, Béatrice Pérarnau, and François A. Lemonnier. "Phenotypical and Functional Characterization of the CD8+ T Cell Repertoire of HLA-A2.1 Transgenic, H-2K b °D b ° Double Knockout Mice." Journal of Immunology 163, no. 5 (1999): 2555–60. http://dx.doi.org/10.4049/jimmunol.163.5.2555.
Texte intégralNalawade, Saisha A., Niannian Ji, Ellen Kraig, and Thomas Forsthuber. "Aire is not essential for regulating autoimmune pathology in mice transgenic for human autoimmune-disease associated MHC class II genes HLA-DR2b and HLA-DR4." Journal of Immunology 200, no. 1_Supplement (2018): 167.8. http://dx.doi.org/10.4049/jimmunol.200.supp.167.8.
Texte intégralSantos, M., M. W. Schilham, L. H. Rademakers, J. J. Marx, M. de Sousa, and H. Clevers. "Defective iron homeostasis in beta 2-microglobulin knockout mice recapitulates hereditary hemochromatosis in man." Journal of Experimental Medicine 184, no. 5 (1996): 1975–85. http://dx.doi.org/10.1084/jem.184.5.1975.
Texte intégralPascolo, Steve, Nathalie Bervas, Jan M. Ure, Austin G. Smith, François A. Lemonnier та Béatrice Pérarnau. "HLA-A2.1–restricted Education and Cytolytic Activity of CD8+ T Lymphocytes from β2 Microglobulin (β2m) HLA-A2.1 Monochain Transgenic H-2Db β2m Double Knockout Mice". Journal of Experimental Medicine 185, № 12 (1997): 2043–51. http://dx.doi.org/10.1084/jem.185.12.2043.
Texte intégralKushniarova, Lizaveta V., Alexandr A. Migas, Hanna V. Klych, Yauheni A. Lasiukov, and Alexander N. Meleshko. "Knockout of the T-cell receptor and HLA class I genes in human cells using the CRISPR /Cas9 system." Experimental Biology and Biotechnology, no. 2 (July 6, 2022): 19–26. http://dx.doi.org/10.33581/2957-5060-2022-2-19-26.
Texte intégralRajagopalan, Govindarajan, Ashenafi Tilahun, and Vaidehi Chowdhary. "Chronic activation with a staphylococcal superantigen drives the expansion of CD4, CD8 double negative T cells and promotes multiorgan inflammation mimicking systemic lupus erythematosus in HLA class II transgenic mice. (HUM7P.306)." Journal of Immunology 192, no. 1_Supplement (2014): 184.15. http://dx.doi.org/10.4049/jimmunol.192.supp.184.15.
Texte intégralElliott, J. F., J. Liu, Z. N. Yuan, et al. "Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IA knockout NOD mice." Proceedings of the National Academy of Sciences 100, no. 23 (2003): 13447–52. http://dx.doi.org/10.1073/pnas.2235552100.
Texte intégralChen, Liye, Hui Shi, Danai Koftori, et al. "Identification of an Unconventional Subpeptidome Bound to the Behçet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1)." Molecular & Cellular Proteomics 19, no. 5 (2020): 871–83. http://dx.doi.org/10.1074/mcp.ra119.001617.
Texte intégralVenkatasubramaniam, Arundhathi, Tulasikumari Kanipakala, Nader Ganjbaksh, et al. "A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System." Toxins 10, no. 9 (2018): 377. http://dx.doi.org/10.3390/toxins10090377.
Texte intégralKarkischenko, N. N., V. N. Lazarev, V. A. Manuvera, et al. "Principles of Creation of a Genetic Engineering Construction for Obtaining Humanized Transgenic Mice with <i>HLA-C*07:02:01:01</i>, as a Promote of Innovative Transgenic and Knockout Biomodels." Journal Biomed 20, no. 1 (2024): 8–20. http://dx.doi.org/10.33647/2074-5982-20-1-8-20.
Texte intégralChapoval, Svetlana P., Teresa Neeno, Christopher J. Krco, Eric V. Marietta, Jerry Harders, and Chella S. David. "HLA-DQ6 and HLA-DQ8 Transgenic Mice Respond to Ragweed Allergens and Recognize a Distinct Set of Epitopes on Short and Giant Ragweed Group 5 Antigens." Journal of Immunology 161, no. 4 (1998): 2032–37. http://dx.doi.org/10.4049/jimmunol.161.4.2032.
Texte intégralCatelli, Lucas Ferioli, Marcus Alexandre Finzi Corat, Nádia Ghinelli Amôr, et al. "Knockout of the Beta-2 Microglobulin Gene in Adipose Tissue-Derived Cells Using CRISPR/CAS9 System for the Generation of Universal HLA Class I Platelets." Blood 144, Supplement 1 (2024): 1266. https://doi.org/10.1182/blood-2024-205233.
Texte intégralDufva, Olli, Jay Klievink, Khalid Saeed, et al. "Genome-Scale CRISPR Screens Identify Essential Genes for Sensitivity to Natural Killer Cells in Hematological Malignancies." Blood 132, Supplement 1 (2018): 732. http://dx.doi.org/10.1182/blood-2018-99-117985.
Texte intégralZaia, John A., Xiuli Li, Anne E. Franck, Xiwei Wu, Lia Thao, and Ghislaine Gallez-Hawkins. "Biologic and Immunologic Effects of Knockout of Human Cytomegalovirus pp65 Nuclear Localization Signal." Clinical and Vaccine Immunology 16, no. 6 (2009): 935–43. http://dx.doi.org/10.1128/cvi.00011-09.
Texte intégralChandrasekaran, Siddarth, Vignesh Janardhanam, Ian Cardle, et al. "A Layered Cloaking Strategy to Generate Allogeneic iPSC-Derived CD8 T-Cells That Evade NK Clearance." Blood 144, Supplement 1 (2024): 2045. https://doi.org/10.1182/blood-2024-210003.
Texte intégralFirat, H. "Comparative analysis of the CD8+ T cell repertoires of H-2 class I wild-type/HLA-A2.1 and H-2 class I knockout/HLA-A2.1 transgenic mice." International Immunology 14, no. 8 (2002): 925–34. http://dx.doi.org/10.1093/intimm/dxf056.
Texte intégralSteinitz, Katharina N., Pauline M. van Helden, Brigitte Binder, et al. "CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice." Blood 119, no. 17 (2012): 4073–82. http://dx.doi.org/10.1182/blood-2011-08-374645.
Texte intégralRohrlich, P. S. "HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus." International Immunology 15, no. 6 (2003): 765–72. http://dx.doi.org/10.1093/intimm/dxg073.
Texte intégralBlack, Kay E., Joseph A. Murray, and Chella S. David. "HLA-DQ Determines the Response to Exogenous Wheat Proteins: A Model of Gluten Sensitivity in Transgenic Knockout Mice." Journal of Immunology 169, no. 10 (2002): 5595–600. http://dx.doi.org/10.4049/jimmunol.169.10.5595.
Texte intégralGuo, Chao, Yanying Fan, Alexander Aronov, et al. "113 CISH gene-knockout anti-CD70-CAR NK cells demonstrate potent anti-tumor activity against solid tumor cell lines and provide partial resistance to tumor microenvironment inhibition." Journal for ImmunoTherapy of Cancer 9, Suppl 2 (2021): A123. http://dx.doi.org/10.1136/jitc-2021-sitc2021.113.
Texte intégralGu, Xiaorong, Songa Bae, Yahan Zhang, et al. "Loss of TET2 Increases MHC Class I Expression in Acute Myeloid Leukemia." Blood 144, Supplement 1 (2024): 4159. https://doi.org/10.1182/blood-2024-208348.
Texte intégralGarner, Elizabeth, Erin Kelly, Sai Namburi, et al. "Abstract 3201: CB-012, an allogeneic anti-CLL-1 CAR-T cell therapy engineered with next-generation CRISPR technology to resist both the immunosuppressive tumor microenvironment and immune cell-mediated rejection, for patients with relapsed or refractory acute myeloid leukemia." Cancer Research 83, no. 7_Supplement (2023): 3201. http://dx.doi.org/10.1158/1538-7445.am2023-3201.
Texte intégralPajot, Anthony, Marie-Louise Michel, Nicolas Fazilleau, et al. "A mouse model of human adaptive immune functions:HLA-A2.1-/HLA-DR1-transgenicH-2 class I-/class II-knockout mice." European Journal of Immunology 34, no. 11 (2004): 3060–69. http://dx.doi.org/10.1002/eji.200425463.
Texte intégralDufva, Olli, Khalid Saeed, Sara Gandolfi, et al. "CRISPR Screens Identify Mechanisms of Natural Killer Cell Evasion across Blood Cancers." Blood 134, Supplement_1 (2019): 3597. http://dx.doi.org/10.1182/blood-2019-129837.
Texte intégralTriolo, Taylor M., J. Quinn Matuschek, Roberto Castro-Gutierrez та ін. "Stem-Cell-Derived β-Like Cells with a Functional PTPN2 Knockout Display Increased Immunogenicity". Cells 11, № 23 (2022): 3845. http://dx.doi.org/10.3390/cells11233845.
Texte intégralKarkischenko, N. N., V. A. Ezerskiy, O. B. Zhukova, E. M. Koloskova та N. V. Petrova. "Increasing, the Specificity of Polyclonal Antibodies to Human and Mouse β2-Microglobulin as an Alternative to the Use of Monoclonal Antibodies in Immunological Analysis". Journal Biomed 20, № 2 (2024): 53–65. http://dx.doi.org/10.33647/2074-5982-20-2-53-65.
Texte intégralKhare, Sanjay D., Michael J. Bull, Julie Hanson, Harvinder S. Luthra, and Chella S. David. "Spontaneous Inflammatory Disease in HLA-B27 Transgenic Mice Is Independent of MHC Class II Molecules: A Direct Role for B27 Heavy Chains and Not B27-Derived Peptides." Journal of Immunology 160, no. 1 (1998): 101–6. http://dx.doi.org/10.4049/jimmunol.160.1.101.
Texte intégralCrivello, Pietro, Müberra Ahci, Fabienne Maaßen та ін. "Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA". Journal of Immunology 202, № 6 (2019): 1895–903. http://dx.doi.org/10.4049/jimmunol.1800257.
Texte intégralRobinson, Philip C., Eugene Lau, Patricia Keith, et al. "ERAP2functional knockout in humans does not alter surface heavy chains or HLA-B27, inflammatory cytokines or endoplasmic reticulum stress markers." Annals of the Rheumatic Diseases 74, no. 11 (2015): 2092–95. http://dx.doi.org/10.1136/annrheumdis-2015-207467.
Texte intégralFirat, Hüseyin, Francisco Garcia-Pons, Sophie Tourdot, et al. "H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies." European Journal of Immunology 29, no. 10 (1999): 3112–21. http://dx.doi.org/10.1002/(sici)1521-4141(199910)29:10<3112::aid-immu3112>3.0.co;2-q.
Texte intégralYang, Hongyun, Wen Jiang, Emma E. Furth, et al. "Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea." American Journal of Physiology-Gastrointestinal and Liver Physiology 275, no. 6 (1998): G1445—G1453. http://dx.doi.org/10.1152/ajpgi.1998.275.6.g1445.
Texte intégralHahn, Cynthia K., Gavin E. Hooper, Alexandra Forman, et al. "SEC62 Regulates HLA-E Expression in Diffuse Large B-Cell Lymphoma to Function As a Mechanism of Immune Evasion." Blood 144, Supplement 1 (2024): 335. https://doi.org/10.1182/blood-2024-210613.
Texte intégralMoise, Leonard, Jonathan Skupsky, Ryan Tassone, et al. "De-Immunization of Human Factor VIII: Identification of Epitopes in the C2 Domain." Blood 112, no. 11 (2008): 1030. http://dx.doi.org/10.1182/blood.v112.11.1030.1030.
Texte intégralSong, Nianbin, Yuri Poluektov, Robin Welsh, and Scheherazade Sadegh-Nasseri. "MHC class II antigen-processing chaperone H2-O shapes CD4 T cell receptor repertoire." Journal of Immunology 196, no. 1_Supplement (2016): 46.11. http://dx.doi.org/10.4049/jimmunol.196.supp.46.11.
Texte intégralChen, Huanhuan, Keqing Yang, Lingxiao Pang, Jing Fei, Yongliang Zhu, and Jianwei Zhou. "ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer." Journal for ImmunoTherapy of Cancer 11, no. 2 (2023): e005527. http://dx.doi.org/10.1136/jitc-2022-005527.
Texte intégralLiu, Fuguo, Mubin Tarannum, Yingjie Zhao, et al. "One-Step Construction of Allogeneic CAR-NK Cells Preventing Rejection and Mediating Enhanced Anti-Tumor Responses." Blood 144, Supplement 1 (2024): 915. https://doi.org/10.1182/blood-2024-198167.
Texte intégral