Littérature scientifique sur le sujet « Hole Transport layer (HTL) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Hole Transport layer (HTL) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Hole Transport layer (HTL)"

1

Mehdi, S., R. Amraoui, and A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials." Digest Journal of Nanomaterials and Biostructures 17, no. 3 (2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.

Texte intégral
Résumé :
In this paper, a comparative study between four OLEDs devices is carried out. The bi- layers device (A) (consists of) Hole Injection Layer (HIL)/Electron Transport Layer (ETL), the multilayer device (B) (consists of) HIL Layer/Hole Transport Layer (HTL)/ETL Layer. The influence of the hole transporting material on the performance of the three layers OLEDs was investigated. Three different HTL materials were used: α- NPD, TAPC and p-TTA with the same electron transporting material as Alq3; (these holes transport material consists the devices (B), (C) and (D) respectively). The carrier injection
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Wang, Hui Liu, Changwen Liu, et al. "Approaching optimal hole transport layers by an organic monomolecular strategy for efficient inverted perovskite solar cells." Journal of Materials Chemistry A 8, no. 32 (2020): 16560–69. http://dx.doi.org/10.1039/c9ta13167a.

Texte intégral
Résumé :
We report a universal monomolecular layer-hole transport layer (ML-HTL) strategy, employing MLs of widely used organic hole transport materials to construct HTLs. A fill factor of 81.86% and champion PCE of 20.58% were achieved with a hydrophobic small molecule ML-HTL.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rahime, N. A. H., A. Azis, M. Z. M. Yusoff, and M. S. Yahya. "Ray tracing analysis of CH3NH3PBI3-based perovskite solar cells: effects of various perovskite, ETL and HTL thicknesses." Journal of Optoelectronic and Biomedical Materials 17, no. 2 (2025): 99–107. https://doi.org/10.15251/jobm.2025.172.99.

Texte intégral
Résumé :
This study investigates how the thickness of the CH3NH3PbI3 perovskite layer influences light absorption and the power conversion efficiency of the solar cell. The goal for this research is to identify the optimum values of perovskite nanocrystalline (CH3NH3PbI3) thickness layer, to determine the ideal thickness of hole transport layer (HTL) and electron transport layer (ETL) to achieve maximum photocurrent density (Jmax) and to investigate the relationship between the hole transport layer (HTL) and electron transport layer (ETL) thickness on perovskites solar cell performance. Wafer Ray Trace
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kim, Jeong-Beom, Jae-In Yoo, Hyo-Bin Kim, Jincheol Jang, and Jang-Kun Song. "28‐5: Late‐News Paper: Investigation on Enhanced Performance of All†solution Inverted Quantum Dot Light Emitting Diode via Changing a Solvent." SID Symposium Digest of Technical Papers 55, no. 1 (2024): 364–66. http://dx.doi.org/10.1002/sdtp.17532.

Texte intégral
Résumé :
In inverted quantum‐dot light‐emitting‐diodes (QD‐LED), it is important to use orthogonal solvent for hole‐transport layer(HTL). In addition, modulating work function of each layer is good way to enhance carrier injection barrier. In this research, we confirmed the viability of usage of a solvent, named gamma‐valerolactone (GVL) for forming hole transport layer (HTL). By using the solvent, current density, luminance, roll‐off characteristics were enhanced, and highest occupied molecular orbital (HOMO) level was changed, which can enhance the hole injection.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Kaixuan, Dongwei Sun, Ying Chen, and Dong Fu. "60‐2: Observation of subtle interfacial mixing in solution‐processed OLEDs." SID Symposium Digest of Technical Papers 55, S1 (2024): 509–11. http://dx.doi.org/10.1002/sdtp.17126.

Texte intégral
Résumé :
We evaluated two polymer hole transport materials (HTM). The difference in the interface‐mixing between the hole transport layer (HTL) and the emitting layer (EML) is shown by the visual method, and it is found that this is the main source of the difference in their lifetime. This will help us to quickly select solution‐processed hole transport materials.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yoo, Jae-In, Hyobin Kim, Sung-Cheon Kang, et al. "P‐162: Late‐News Poster: Analysis of Various solvents for Hole Transport Layer in Tandem Structure Quantum Dot Light Emitting Diode." SID Symposium Digest of Technical Papers 54, no. 1 (2023): 1766–69. http://dx.doi.org/10.1002/sdtp.16946.

Texte intégral
Résumé :
To achieve high‐resolution display, dual color tandem quantum dot light emitting diodes (QD‐LED) could be candidate. This tandem QD‐LED's characteristics affected by interface of emission layer (EML)/hole transport layer (HTL) and thickness of electron transport layer (ETL). In this research, we analyzed various solvents for HTL and modulated ETL thickness.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Ao, Qichuan Huang, Kaiying Luo, et al. "Efficient Nanocrystal Photovoltaics with PTAA as Hole Transport Layer." Nanomaterials 12, no. 17 (2022): 3067. http://dx.doi.org/10.3390/nano12173067.

Texte intégral
Résumé :
The power conversion efficiency (PCE) of solution-processed CdTe nanocrystals (NCs) solar cells has been significantly promoted in recent years due to the optimization of device design by advanced interface engineering techniques. However, further development of CdTe NC solar cells is still limited by the low open-circuit voltage (Voc) (mostly in range of 0.5–0.7 V), which is mainly attributed to the charge recombination at the CdTe/electrode interface. Herein, we demonstrate a high-efficiency CdTe NCs solar cell by using organic polymer poly[bis(4–phenyl)(2,4,6–trimethylphenyl)amine] (PTAA) a
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xu, Shihui, Lin Yang, Zhe Wang, et al. "Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells." Materials 18, no. 2 (2025): 415. https://doi.org/10.3390/ma18020415.

Texte intégral
Résumé :
The CsPbBr3 perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr3 limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr3 perovskite (FTO/c-TiO2/m-TiO2/CsPbBr3/BP/C) solar cell. BP can enhance hole extraction capabilities and reduce carrier recombination by adjusting the interface contact between the perovsk
Styles APA, Harvard, Vancouver, ISO, etc.
9

He, Lijuan, Deyu Wang, Yan Zhao, Yiqi Zhang, Wei Wei, and Liang Shen. "Efficient hole transport layers based on cross-linked poly(N-vinylcarbazole) for high-performance perovskite photodetectors." Journal of Materials Chemistry C 9, no. 35 (2021): 11722–28. http://dx.doi.org/10.1039/d1tc01367j.

Texte intégral
Résumé :
The cross-linked PVK doping with F4TCNQ demonstrated outstanding hole extraction and transport capability, has been successfully used in p–i–n perovskite photodetectors as an efficient hole transport layer (HTL).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dzikri, Istighfari, Michael Hariadi, Retno Wigajatri Purnamaningsih, and Nji Raden Poespawati. "Analysis of the role of hole transport layer materials to the performance of perovskite solar cell." E3S Web of Conferences 67 (2018): 01021. http://dx.doi.org/10.1051/e3sconf/20186701021.

Texte intégral
Résumé :
Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conver
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Hole Transport layer (HTL)"

1

Widjonarko, Nicodemus Edwin. "Physics of Nickel Oxide Hole Transport Layer for Organic Photovoltaics Application." Thesis, University of Colorado at Boulder, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3592397.

Texte intégral
Résumé :
<p> Organic photovoltaics (OPV) offers a potential for solar-electric power generation to be affordable. Crucial to OPV device performance is the incorporation of interlayers, ultra-thin films deposited between the photoactive material and the electrical contacts. These interlayers have various, targeted functionalities: optical window, encapsulation, or electronic bridge. The last category is known as "transport layers'', and is the focus of this thesis. </p><p> In this thesis, we explore and investigate the physics that leads to improvements in OPV device performance when a transport laye
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Feijiu. "Studies of nano-carbon hole transport layer for high performance photovoltaic devices." Kyoto University, 2016. http://hdl.handle.net/2433/215655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

LEE, Duck-Chool, Teruyoshi MIZUTANI, Tatsuo MORI, and Hyeong-Gweon KIM. "Red EL Properties of OLED Having Hole Blocking Layer." Institute of Electronics, Information and Communication Engineers, 2000. http://hdl.handle.net/2237/15009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Goud, Margaret R. "Prediction of continental shelf sediment transport using a theoretical model of the wave-current boundary layer." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/58493.

Texte intégral
Résumé :
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987.<br>Includes bibliographical references (leaves 181-185).<br>This thesis presents an application of the Grant-Madsen-Glenn bottom boundary layer model (Grant and Madsen, 1979; Glenn and Grant, 1987) to predictions of sediment transport on the continental shelf. The analysis is a two-stage process. Via numerical experiment, we explore the sensitivity of sediment transport to variations in model parameters
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ali, Fawad. "Investigation of metal oxides thin films developed by PVD system for perovskite solar cells." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/127139/1/Fawad_Ali_Thesis.pdf.

Texte intégral
Résumé :
This research presents thin film deposition and characterization of metal oxides using industrially viable Physical Vapour Deposition (PVD) techniques. The research examines low temperature processed electron and hole transport metal oxides for high performance and stable perovskite solar cells. The physical, chemical, optical and electronic properties of the films were investigated and their device performance has been evaluated. The performance of the device improved and the materials cost reduced by replacing the expansive organic materials with more stable inorganic metal oxides.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Satter, Md Mahbub. "Design and theoretical study of Wurtzite III-N deep ultraviolet edge emitting laser diodes." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53042.

Texte intégral
Résumé :
Designs for deep ultraviolet (DUV) edge emitting laser diodes (LDs) based on the wurtzite III-nitride (III-N) material system are presented. A combination of proprietary and commercial advanced semiconductor LD simulation software is used to study the operation of III-N based DUV LDs theoretically. Critical factors limiting device performance are identified based on an extensive literature survey. A comprehensive design parameter space is investigated thoroughly with the help of advanced scripting capabilities. Several design strategies are proposed to eliminate the critical problems completel
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mustaffa, Muhammad Ubaidah Syafiq. "Alternative Uses of CZTS Thin Films for Energy Harvesting." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/315176.

Texte intégral
Résumé :
The search for renewable energy resources and ways to harvest them has become a global mainstream topic among researchers nowadays, with solar cells and thermoelectric generators among the energy harvesting technologies currently being researched in vast. CZTS (Cu2ZnSnS4), a p-type semiconducting material initially researched to replace copper indium gallium selenide (CIGS) as the light absorbing layer in thin film solar cells, was studied in this doctoral work for alternative uses in energy harvesting. This work aims to systemically investigate the prospects of CZTS to be used as hole trans
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mustaffa, Muhammad Ubaidah Syafiq. "Alternative Uses of CZTS Thin Films for Energy Harvesting." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/315176.

Texte intégral
Résumé :
The search for renewable energy resources and ways to harvest them has become a global mainstream topic among researchers nowadays, with solar cells and thermoelectric generators among the energy harvesting technologies currently being researched in vast. CZTS (Cu2ZnSnS4), a p-type semiconducting material initially researched to replace copper indium gallium selenide (CIGS) as the light absorbing layer in thin film solar cells, was studied in this doctoral work for alternative uses in energy harvesting. This work aims to systemically investigate the prospects of CZTS to be used as hole transpo
Styles APA, Harvard, Vancouver, ISO, etc.
9

Matta, Sri Kasi Venkata Nageswara Rao. "Computational exploration of two-dimensional (2D) materials for solar energy applications." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134244/1/Sri%20Kasi%20Venkata%20Nageswara%20Rao%20Matta%20Thesis_Redacted.pdf.

Texte intégral
Résumé :
This project is to find innovative and alternate Nano-sized materials for solar energy applications. This include conversion of solar light energy into electricity or generate clean environment friendly fuels by breaking water into Oxygen and Hydrogen. The study has explored material characteristics at electronic level to reveal new properties. These revelations then compared amongst some of the organic and inorganic materials for the intended purpose. Innovative design of new carbon-compounds (termed as carbon Quantum dots) included in the study for use in the new generation Perovskite solar
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bottois, Clément. "Nanoparticules pour la réalisation de couches de transport de trous appliquées au photovoltaïque organique." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI025/document.

Texte intégral
Résumé :
Dans les cellules photovoltaïques organiques, le matériau utilisé pour le transport de trous entre la couche active et l'électrode, est généralement un polymère dopé, dont la stabilité peut être problématique. L'objectif de cette thèse a été de développer des matériaux inorganiques, a priori plus stables, pour remplacer les couches de polymères de transport de trous, tout en restant compatible avec les méthodes de dépôts par voie liquide. L'utilisation de nanoparticules dispersées en solution a été choisie car cela permet le dépôt à basse température, sans nécessité de conversion vers une couc
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Hole Transport layer (HTL)"

1

Mhamad, Shakhawan Ahmad, Abdussamad Mukhtar Mohammed, Madzlan Aziz, and Farhana Aziz. "Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance." In Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59594-7_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bajpai, Manisha, Ritu Srivastava, R. S. Tiwari, and R. Dhar. "Enhanced Hole Transport in Polyfluorene Polymer by Using Hole Injection Layer." In Physics of Semiconductor Devices. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Teng, Pengpeng, Nian Cheng, Jun Zhang, Shaowen Tang, Mengran Chen, and Peng-an Zong. "Electron/Hole Transport Layer Free Perovskite Solar Cells." In Handbook of Perovskite Solar Cells, Volume 2. CRC Press, 2024. http://dx.doi.org/10.1201/9781003400493-10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Uddin, Rukon, Subrata Bhowmik, Md Eyakub Ali, and Sayem Ul Alam. "Hole Transport Layer Free Non-toxic Perovskite Solar Cell Using ZnSe Electron Transport Material." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34622-4_39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rawat, Madhu, and S. Sundar Kumar Iyer. "Lower Drying Temperature Process for Hole Transport Layer PEDOT: PSS in PCDTBT: PCBM Devices." In Springer Proceedings in Physics. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1571-8_38.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Soulis, Spyridon, and Despina Triantou. "Thiophene-Based Copolymers Synthesized by Electropolymerization for Application as Hole Transport Layer in Organic Photovoltaics Cells." In High-Efficiency Solar Cells. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ballarotto, M., W. N. Herman, and D. B. Romero. "High Fill-Factor Organic Bulk Heterojunction Photovoltaic Devices Using a Highly Conducting Hole-Doped Polymer Transport Layer." In Organic Thin Films for Photonic Applications. American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1039.ch014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dijkstra, J. E., and W. Th Wenckebach. "Hole Transport in a Strained SI Layer Grown on a Relaxed ( 001 )-Si(1−x)Ge x Substrate." In Hot Carriers in Semiconductors. Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sharma, Atish Kumar, Ankita Srivastava, Prakash Kumar Jha, Manish Kumar, Nitesh K. Chourasia, and Ritesh Kumar Chourasia. "Performance Improvement in p-Si/n-CdS/ALD-ZnO Heterojunction Solar Cell by Introducing MoSe2 Ingenious Hole Transport Layer." In Advanced Functional Materials for Sustainable Environments. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62620-3_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Vaish, Saumya, and Shiv Kumar Dixit. "Effect of NiO Hole Transport Layer Thickness on the Power Conversion Efficiency of Perovskite Solar Cell: A Numerical Simulation Study." In Springer Proceedings in Materials. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4685-3_43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Hole Transport layer (HTL)"

1

Dasgupta, Somnath, Mihir Kumar Mahata, T. Das, A. Sarkar, Gufran Ahmad, and Syed Sadique Anwer Askari. "Effect of Hole Transport Layer on Tin Based Perovskite Solar Cells." In 2024 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE, 2024. https://doi.org/10.1109/edkcon62339.2024.10870457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Bing’e, Xiangtian Xiao, and Xiaoli Zhang. "Efficient perovskite solar cells based on self-assembled monolayers as hole transport layer." In Seventh Global Intelligent Industry Conference (GIIC 2024), edited by Xingjun Wang. SPIE, 2024. http://dx.doi.org/10.1117/12.3032205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mei, Dengfeng, Jun Hu, Ting Shi, Jinchuan Li, and Hang Zhou. "Improving the Performance of Solution-processed OLED by High Triplet Energy Hole Transport Layer." In 2024 7th International Conference on Electronics Technology (ICET). IEEE, 2024. http://dx.doi.org/10.1109/icet61945.2024.10672983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Du, Xiaoqing, Jianchun Yang, Shaoli Cui, and Xiaoyang Liu. "Performance improvement of organic light-emitting diodes with graphene oxide-based hole transport layer." In Fourth International Conference on Optics and Image Processing (ICOIP 2024), edited by Xiaotao Hao and Chuan Qin. SPIE, 2024. http://dx.doi.org/10.1117/12.3039390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pramanik, Subham, Kanishka Majumder, Aninda Chandra, Atriya Sett, Niladri Burman, and Debajit Kumar. "Numerical Simulation of Tin-Based Perovskite Solar Cell Incorporating 2D Graphene Derivatives as Hole Transport Layer: Optimization of Absorber Layer." In 2025 Devices for Integrated Circuit (DevIC). IEEE, 2025. https://doi.org/10.1109/devic63749.2025.11012180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Aziz, Ahmad Muhajer Abdul, Muhammad Idzdihar Idris, Zul Atfyi Fauzan Mohammed Napiah, et al. "Exploring the Characterization of Electrodeposited MoS2 as a Hole Transport Layer in Methylammonium Perovskite Solar Cells." In 2024 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2024. http://dx.doi.org/10.1109/icse62991.2024.10681381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Sheng, Weikai Fan, Weijie Fang, Meilin Zhang, and Jiang Wu. "SCAPS-1D simulation of RbGeI3-based solar cells with gradient doping and no hole transport layer." In 2025 International Conference on Power Electronics Technology and Grid Systems (PETGS 2025), edited by Wei Lai. SPIE, 2025. https://doi.org/10.1117/12.3067927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Panachikkool, Muhammad, and Pandiyarajan Thangaraj. "Copper bismuth oxide-based solar cells with graphene oxide as hole transport layer: a realistic simulation approach." In Smart Materials for Opto-Electronic Applications 2025, edited by Ivo Rendina, Lucia Petti, Domenico Sagnelli, and Giuseppe Nenna. SPIE, 2025. https://doi.org/10.1117/12.3057232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kaul, Anupama B. "Triple-cation perovskite solar cells with an inorganic two-dimensional tungsten diselenide hole transport layer for moisture stability." In Energy Harvesting and Storage: Materials, Devices, and Applications XV, edited by Peter Bermel, Naresh C. Das, and Zunaid Omair. SPIE, 2025. https://doi.org/10.1117/12.3054132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Acharjee, Keya, Rukon Uddin, and Anamika Barua. "Performance Study of Hole Transport Layer-Free Cs2 TiBr6-Based Perovskite Solar Cell." In 2024 International Conference on Recent Progresses in Science, Engineering and Technology (ICRPSET). IEEE, 2024. https://doi.org/10.1109/icrpset64863.2024.10955866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!