Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Hole Transport layer (HTL).

Articles de revues sur le sujet « Hole Transport layer (HTL) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hole Transport layer (HTL) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mehdi, S., R. Amraoui, and A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials." Digest Journal of Nanomaterials and Biostructures 17, no. 3 (2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.

Texte intégral
Résumé :
In this paper, a comparative study between four OLEDs devices is carried out. The bi- layers device (A) (consists of) Hole Injection Layer (HIL)/Electron Transport Layer (ETL), the multilayer device (B) (consists of) HIL Layer/Hole Transport Layer (HTL)/ETL Layer. The influence of the hole transporting material on the performance of the three layers OLEDs was investigated. Three different HTL materials were used: α- NPD, TAPC and p-TTA with the same electron transporting material as Alq3; (these holes transport material consists the devices (B), (C) and (D) respectively). The carrier injection
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Wang, Hui Liu, Changwen Liu, et al. "Approaching optimal hole transport layers by an organic monomolecular strategy for efficient inverted perovskite solar cells." Journal of Materials Chemistry A 8, no. 32 (2020): 16560–69. http://dx.doi.org/10.1039/c9ta13167a.

Texte intégral
Résumé :
We report a universal monomolecular layer-hole transport layer (ML-HTL) strategy, employing MLs of widely used organic hole transport materials to construct HTLs. A fill factor of 81.86% and champion PCE of 20.58% were achieved with a hydrophobic small molecule ML-HTL.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rahime, N. A. H., A. Azis, M. Z. M. Yusoff, and M. S. Yahya. "Ray tracing analysis of CH3NH3PBI3-based perovskite solar cells: effects of various perovskite, ETL and HTL thicknesses." Journal of Optoelectronic and Biomedical Materials 17, no. 2 (2025): 99–107. https://doi.org/10.15251/jobm.2025.172.99.

Texte intégral
Résumé :
This study investigates how the thickness of the CH3NH3PbI3 perovskite layer influences light absorption and the power conversion efficiency of the solar cell. The goal for this research is to identify the optimum values of perovskite nanocrystalline (CH3NH3PbI3) thickness layer, to determine the ideal thickness of hole transport layer (HTL) and electron transport layer (ETL) to achieve maximum photocurrent density (Jmax) and to investigate the relationship between the hole transport layer (HTL) and electron transport layer (ETL) thickness on perovskites solar cell performance. Wafer Ray Trace
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kim, Jeong-Beom, Jae-In Yoo, Hyo-Bin Kim, Jincheol Jang, and Jang-Kun Song. "28‐5: Late‐News Paper: Investigation on Enhanced Performance of All†solution Inverted Quantum Dot Light Emitting Diode via Changing a Solvent." SID Symposium Digest of Technical Papers 55, no. 1 (2024): 364–66. http://dx.doi.org/10.1002/sdtp.17532.

Texte intégral
Résumé :
In inverted quantum‐dot light‐emitting‐diodes (QD‐LED), it is important to use orthogonal solvent for hole‐transport layer(HTL). In addition, modulating work function of each layer is good way to enhance carrier injection barrier. In this research, we confirmed the viability of usage of a solvent, named gamma‐valerolactone (GVL) for forming hole transport layer (HTL). By using the solvent, current density, luminance, roll‐off characteristics were enhanced, and highest occupied molecular orbital (HOMO) level was changed, which can enhance the hole injection.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Kaixuan, Dongwei Sun, Ying Chen, and Dong Fu. "60‐2: Observation of subtle interfacial mixing in solution‐processed OLEDs." SID Symposium Digest of Technical Papers 55, S1 (2024): 509–11. http://dx.doi.org/10.1002/sdtp.17126.

Texte intégral
Résumé :
We evaluated two polymer hole transport materials (HTM). The difference in the interface‐mixing between the hole transport layer (HTL) and the emitting layer (EML) is shown by the visual method, and it is found that this is the main source of the difference in their lifetime. This will help us to quickly select solution‐processed hole transport materials.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yoo, Jae-In, Hyobin Kim, Sung-Cheon Kang, et al. "P‐162: Late‐News Poster: Analysis of Various solvents for Hole Transport Layer in Tandem Structure Quantum Dot Light Emitting Diode." SID Symposium Digest of Technical Papers 54, no. 1 (2023): 1766–69. http://dx.doi.org/10.1002/sdtp.16946.

Texte intégral
Résumé :
To achieve high‐resolution display, dual color tandem quantum dot light emitting diodes (QD‐LED) could be candidate. This tandem QD‐LED's characteristics affected by interface of emission layer (EML)/hole transport layer (HTL) and thickness of electron transport layer (ETL). In this research, we analyzed various solvents for HTL and modulated ETL thickness.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Ao, Qichuan Huang, Kaiying Luo, et al. "Efficient Nanocrystal Photovoltaics with PTAA as Hole Transport Layer." Nanomaterials 12, no. 17 (2022): 3067. http://dx.doi.org/10.3390/nano12173067.

Texte intégral
Résumé :
The power conversion efficiency (PCE) of solution-processed CdTe nanocrystals (NCs) solar cells has been significantly promoted in recent years due to the optimization of device design by advanced interface engineering techniques. However, further development of CdTe NC solar cells is still limited by the low open-circuit voltage (Voc) (mostly in range of 0.5–0.7 V), which is mainly attributed to the charge recombination at the CdTe/electrode interface. Herein, we demonstrate a high-efficiency CdTe NCs solar cell by using organic polymer poly[bis(4–phenyl)(2,4,6–trimethylphenyl)amine] (PTAA) a
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xu, Shihui, Lin Yang, Zhe Wang, et al. "Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells." Materials 18, no. 2 (2025): 415. https://doi.org/10.3390/ma18020415.

Texte intégral
Résumé :
The CsPbBr3 perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr3 limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr3 perovskite (FTO/c-TiO2/m-TiO2/CsPbBr3/BP/C) solar cell. BP can enhance hole extraction capabilities and reduce carrier recombination by adjusting the interface contact between the perovsk
Styles APA, Harvard, Vancouver, ISO, etc.
9

He, Lijuan, Deyu Wang, Yan Zhao, Yiqi Zhang, Wei Wei, and Liang Shen. "Efficient hole transport layers based on cross-linked poly(N-vinylcarbazole) for high-performance perovskite photodetectors." Journal of Materials Chemistry C 9, no. 35 (2021): 11722–28. http://dx.doi.org/10.1039/d1tc01367j.

Texte intégral
Résumé :
The cross-linked PVK doping with F4TCNQ demonstrated outstanding hole extraction and transport capability, has been successfully used in p–i–n perovskite photodetectors as an efficient hole transport layer (HTL).
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dzikri, Istighfari, Michael Hariadi, Retno Wigajatri Purnamaningsih, and Nji Raden Poespawati. "Analysis of the role of hole transport layer materials to the performance of perovskite solar cell." E3S Web of Conferences 67 (2018): 01021. http://dx.doi.org/10.1051/e3sconf/20186701021.

Texte intégral
Résumé :
Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conver
Styles APA, Harvard, Vancouver, ISO, etc.
11

Kim, Sunkyu, Wonjong Lee, Zobia Irshad, et al. "Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films." Energies 17, no. 9 (2024): 2062. http://dx.doi.org/10.3390/en17092062.

Texte intégral
Résumé :
Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier transport, thus lowering the open-circuit voltages (Voc) of PSCs. To unveil this ambiguous phenomenon, we intensively performed various optoelectronic measurements to investigate the impact of interfacial charge-carrier dynamics of PSCs under vario
Styles APA, Harvard, Vancouver, ISO, etc.
12

Salman, Muhammad Umar, Muhammad Mehak, Umair Ali, et al. "Direct correlation between open-circuit voltage and quasi-fermi level splitting in perovskite solar cells: a computational step involving thickness, doping, lifetime, and temperature variations for green solutions." RSC Advances 15, no. 20 (2025): 15618–29. https://doi.org/10.1039/d5ra01868d.

Texte intégral
Résumé :
In this study, a 1D perovskite-based solar cell was simulated using COMSOL, incorporating CH3NH3GeI3 (organic in-organic hybrid) as an absorber layer, SnO2 as the electron transport layer (ETL), and Cu2Te as the hole transport layer (HTL).
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tiwari, Pooja, Maged F. Alotaibi, Yas Al-Hadeethi, et al. "Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer." Nanomaterials 12, no. 14 (2022): 2506. http://dx.doi.org/10.3390/nano12142506.

Texte intégral
Résumé :
In the present paper, the theoretical investigation of the device structure ITO/CeO2/SnS/Spiro-OMeTAD/Mo of SnS-based solar cell has been performed. The aim of this work is to examine how the Spiro-OMeTAD HTL affects the performance of SnS-based heterostructure solar cell. Using SCAPS-1D simulation software, various parameters of SnS-based solar cell such as work function, series and shunt resistance and working temperature have been investigated. With the help of Spiro-OMeTAD, the suggested cell’s open-circuit voltage was increased to 344 mV. The use of Spiro-OMeTAD HTL in the SnS-based solar
Styles APA, Harvard, Vancouver, ISO, etc.
14

Saidani, Okba, Souraya Goumri-Said, Abderrahim Yousfi, Girija Shankar Sahoo, and Mohammed Benali Kanoun. "Probing high-efficiency Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3-based perovskite solar cells through first principles computations and SCAPS-1D simulation." RSC Advances 15, no. 10 (2025): 7342–53. https://doi.org/10.1039/d4ra08323g.

Texte intégral
Résumé :
This study presents a high-efficiency structure perovskite solar cell, incorporating a Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 as absorber, PCBM as the electron transport layer (ETL), and CuSbS2 as the hole transport layer (HTL).
Styles APA, Harvard, Vancouver, ISO, etc.
15

Xu, Yao, Qiaoli Niu, Ling Zhang, et al. "Highly Efficient Perovskite Solar Cell Based on PVK Hole Transport Layer." Polymers 14, no. 11 (2022): 2249. http://dx.doi.org/10.3390/polym14112249.

Texte intégral
Résumé :
A π-conjugated small molecule N, N’-bis(naphthalen-1-yl)-N, N’-bis(phenyl)benzidine (NPB) was introduced into poly(9-vinylcarbazole) (PVK) as a hole transport layer (HTL) in inverted perovskite solar cells (PSCs). The NPB doping induces a better perovskite crystal growth, resulting in perovskite with a larger grain size and less defect density. Thus, the VOC, JSC, and FF of the PSC were all enhanced. Experimental results show that it can be ascribed to the reduction of surface roughness and improved hydrophilicity of the HTL. The effect of NPB on the aggregation of PVK was also discussed. This
Styles APA, Harvard, Vancouver, ISO, etc.
16

Obi, U. C., D. M. Sanni, and A. Bello. "Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells." Физика и техника полупроводников 55, no. 4 (2021): 354. http://dx.doi.org/10.21883/ftp.2021.04.50738.9386a.

Texte intégral
Résumé :
Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper (I) oxide (Cu2O), and copper (I) iodide (CuI) as hole
Styles APA, Harvard, Vancouver, ISO, etc.
17

Obi, U. C., D. M. Sanni, and A. Bello. "Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells." Физика и техника полупроводников 55, no. 4 (2021): 354. http://dx.doi.org/10.21883/ftp.2021.04.50738.9386a.

Texte intégral
Résumé :
Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper (I) oxide (Cu2O), and copper (I) iodide (CuI) as hole
Styles APA, Harvard, Vancouver, ISO, etc.
18

Shehu, Y., S. A. M. Samsuri, and N. M. Ahmed. "Hole transport layers performance analysis of lead-free perovskite solar cell using scaps-1D." IOP Conference Series: Earth and Environmental Science 1281, no. 1 (2023): 012032. http://dx.doi.org/10.1088/1755-1315/1281/1/012032.

Texte intégral
Résumé :
Abstract Lead-free (Pb-free) perovskite solar cell (PVSC) was studied using solar cell capacitor simulator (Scaps-1D). We utilized spiro-OMeTaD-HTL and NiO-HTL to compare between the performance of the devices. The device architecture, FTO/TiO2/Cs2TiI6/Spiro-OMeTaD/Au attained high Performance parameters of Voc as 0.95V, Jsc as 16.58mA/cm2, F.F as 78.51%, and PCE as 12.36%, at the optimum absorber layer of 0.7μm, compared to NiO-HTL of Voc as 1.52V, Jsc as 13.02mA/cm2, F.F as 91.42% and PCE as 17.48% at the optimum absorber layer of 0.4μm. The thicknesses have been varied from 0.1μm to 1.0μm.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Huang, Rui, and Jiyu Tang. "Simulation studies on the electron transport layer based perovskite solar cell to achieve high photovoltaic efficiency." Journal of Physics: Conference Series 2083, no. 2 (2021): 022011. http://dx.doi.org/10.1088/1742-6596/2083/2/022011.

Texte intégral
Résumé :
Abstract Perovskite solar cells have attracted the attention of the researchers in the last couple of years as a potential photovoltaic device. However, the use of expensive hole transport materials (HTM) in these devices often restricts their commercial adaptability. Thus exploring cost-effective, efficient HTL and ETL materials remain an important challenge to the researchers. In this work, simulation studies are carried out considering cupric oxide (CuO), a relatively inexpensive material as hole transport materials for planar heterojunction perovskite solar cells. The photo-voltaic perform
Styles APA, Harvard, Vancouver, ISO, etc.
20

Romashkin, A. V., Yu A. Polikarpov, G. O. Silakov, and E. V. Alexandrov. "Spray deposited thin uniform NiO/Spiro-OMeTAD composite hole transport layer with top carbon nanotube electrode." Journal of Physics: Conference Series 2086, no. 1 (2021): 012097. http://dx.doi.org/10.1088/1742-6596/2086/1/012097.

Texte intégral
Résumé :
Abstract Thin Spiro-OMeTAD and NiO nanoparticles layers, as well as their composite layer was formed by layer-by-layer spray deposition as hole-transport layer (HTL), with followed carbon nanotubes (CNT) deposition to form Ti/TiO2/HTL/CNT structures. Layers’ uniformity was estimated by Raman intensity maps, AFM and current-voltage characteristics of the CNT layer and between CNT and Ti contacts. The possibility of formation of thin, less than 100 nm, pinhole-free uniform composite NiO/Spiro-OMeTAD layer by spray-deposition was shown, which manifests itself as continuous HTL even after top CNT
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zaidi, B., N. Mekhaznia, M. S. Ullah, and H. Al-Dmour. "Evaluating the Efficiency of CuInGaSe2 Based Solar Cells: CuSCN Hole Transport Layer (HTL) Effect." Journal of Physics: Conference Series 2843, no. 1 (2024): 012012. http://dx.doi.org/10.1088/1742-6596/2843/1/012012.

Texte intégral
Résumé :
Abstract Copper indium gallium disulfide (CuInGaSe2) or (CIGS) based solar cells are emerging solar cell structures that have attracted significant interest in recent years. In this research, a SCAPS-1D simulator was used to investigate the performance of the proposed CIGS based solar cell under the effect of a copper (I) thiocyanate (CuSCN) hole transport layer (HTL). Different photovoltaic parameters, such as the efficiency, short circuit current density (Jsc) and open-circuit voltage (Voc), are observed with respect to the doping concentration, temperature, and thickness. A comparative stud
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ibrahim, M. H., M. R. Salim, M. Y. Mohd Nor, A. S. Abdullah, and A. I. Azmi. "Quaternary chalcogenides as transport layers in solid-state DSSC: a feasibility studyQuaternary chalcogenides as transport layers in solid-state DSSC: a feasibility study." Chalcogenide Letters 22, no. 6 (2025): 551–60. https://doi.org/10.15251/cl.2025.226.551.

Texte intégral
Résumé :
Four chalcogenide compounds: copper zinc germanium sulfide (CZGS), copper zinc germanium selenide (CZGSe), copper barium tin sulfide (CBTS), and copper manganese tin sulfide (CMTS) were proposed as hole transport layer (HTL) in dye-sensitized solar cell (DSSC). The DSSC structure comprises fluorine-doped tin oxide (FTO) as the top electrode, zinc oxysulfide (ZnOS) as the electron transport layer (ETL), N719 dye as the light absorber, chalcogenides as the HTL, and gold (Au) as the back electrode. By utilizing the SCAPS 1- D simulator, the optimal thicknesses for ZnOS, HTL candidates and N719 dy
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhou, Zhongmin, and Shuping Pang. "Highly efficient inverted hole-transport-layer-free perovskite solar cells." Journal of Materials Chemistry A 8, no. 2 (2020): 503–12. http://dx.doi.org/10.1039/c9ta10694d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Liu, Wei, Qingxia Liu, Jianhua Xiao, et al. "Performance enhancement of an organic photodetector enabled by NPB modified hole transport layer." Journal of Physics D: Applied Physics 55, no. 23 (2022): 234001. http://dx.doi.org/10.1088/1361-6463/ac5990.

Texte intégral
Résumé :
Abstract Transport layers are extremely important for organic photodetectors (OPDs) due to their effective role in improving the charge selectivity at the contacts, thus leading to high photoresponse and low dark current. The quintessential hole transport layer (HTL), e.g. MoO3, is suffering from the work function instability caused by the preparation process and the evolution in external environment. In this paper, we introduce an N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) interfacial layer to modify MoO3 HTL. At an optimized NPB thickness of 20 nm, the photocurrent
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lei, Ting, Hua Dong, Jun Xi, et al. "Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine." Chemical Communications 54, no. 48 (2018): 6177–80. http://dx.doi.org/10.1039/c8cc03672a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liu, Yu, Bicui Li, Jia Xu, and Jianxi Yao. "Improvement of Thermal Stability and Photoelectric Performance of Cs2PbI2Cl2/CsPbI2.5Br0.5 Perovskite Solar Cells by Triple-Layer Inorganic Hole Transport Materials." Nanomaterials 14, no. 9 (2024): 742. http://dx.doi.org/10.3390/nano14090742.

Texte intégral
Résumé :
Conventional hole transport layer (HTL) Spiro-OMeTAD requires the addition of hygroscopic dopants due to its low conductivity and hole mobility, resulting in a high preparation cost and poor device stability. Cuprous thiocyanate (CuSCN) is a cost-effective alternative with a suitable energy structure and high hole mobility. However, CuSCN-based perovskite solar cells (PSCs) are affected by environmental factors, and the solvents of an HTL can potentially corrode the perovskite layer. In this study, a Co3O4/CuSCN/Co3O4 sandwich structure was proposed as an HTL for inorganic Cs2PbI2Cl2/CsPbI2.5B
Styles APA, Harvard, Vancouver, ISO, etc.
27

Son, Hyung Jin, Hong-Kwan Park, Ji Yeon Moon, Byeong-Kwon Ju, and Sung Hyun Kim. "Thermal degradation related to the PEDOT:PSS hole transport layer and back electrode of the flexible inverted organic photovoltaic module." Sustainable Energy & Fuels 4, no. 4 (2020): 1974–83. http://dx.doi.org/10.1039/c9se00811j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Chaudhary, Neeraj, Rajiv Chaudhary, J. P. Kesari, Asit Patra, and Suresh Chand. "Copper thiocyanate (CuSCN): an efficient solution-processable hole transporting layer in organic solar cells." Journal of Materials Chemistry C 3, no. 45 (2015): 11886–92. http://dx.doi.org/10.1039/c5tc03124a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ghoreishi, Farzaneh S., Vahid Ahmadi, Maryam Alidaei, et al. "Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA2PbI4 interfacial layer." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1675–84. http://dx.doi.org/10.1039/d1cp04863e.

Texte intégral
Résumé :
In this work, the photovoltaic performance and stability of perovskite solar cells (PSCs) based on a dopant-free hole transport layer (HTL) are efficiently improved by inserting a two-dimensional (2D) interfacial layer.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ali, Israt, Muhammad Faraz Ud Din, Daniele T. Cuzzupè, et al. "Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells." Molecules 27, no. 21 (2022): 7452. http://dx.doi.org/10.3390/molecules27217452.

Texte intégral
Résumé :
PEDOT:PSS is a commonly used hole-transport layer (HTL) in inverted perovskite solar cells (PSCs) due to its compatibility with low-temperature solution processing. However, it possesses lower conductivity than other conductive polymers and metal oxides, along with surface defects, limiting its photovoltaic performance. In this study, we introduced two-dimensional Ti3C2Tx (MXene) as an additive in the PEDOT:PSS HTL with varying doping concentrations (i.e., 0, 0.03, 0.05, and 0.1 wt.%) to tune the electrical conductivity of PEDOT:PSS and to modify the properties of the perovskite film atop it.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ge, Jing, Weixin Li, Xuan He, et al. "Hybrid CdSe/CsPbI3 quantum dots for interface engineering in perovskite solar cells." Sustainable Energy & Fuels 4, no. 4 (2020): 1837–43. http://dx.doi.org/10.1039/c9se01205b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ma, Yunping, Jiandong Fan, Cuiling Zhang, Hongliang Li, Wenzhe Li, and Yaohua Mai. "Enhanced charge collection and stability in planar perovskite solar cells based on a cobalt(iii)-complex additive." RSC Advances 7, no. 60 (2017): 37654–58. http://dx.doi.org/10.1039/c7ra05741e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Jung, Sehyun, Seungsun Choi, Woojin Shin, et al. "Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer." Polymers 15, no. 3 (2023): 772. http://dx.doi.org/10.3390/polym15030772.

Texte intégral
Résumé :
Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE. Herein, we demonstrate an increase in the PCE of PSCs with a po
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mukametkali, T. M., A. K. Aimukhanov, and A. K. Zeinidenov. "Phthalocyanine and metal phthalocyanine are hole transport buffer layers for perovskite solar cell fabrication." Bulletin of the Karaganda University "Physics Series" 11529, no. 3 (2024): 41–50. http://dx.doi.org/10.31489/2024ph3/41-50.

Texte intégral
Résumé :
This approach allows you to more accurately evaluate the performance of solar panels and identify any prob- lems or degradation in their operation. The LUMO value of mPc closer to the LUMO value of CH3NH3I3PbClx increased conversion energy and short circuit current density (Jsc), which reached a maximum value of 15.97 mA/cm² using the HTL layer of CuPc, and the open circuit voltage (Voc) reached a maximum at 0.97 V. The change in Jsc corresponds to the fill factor (FF) change. The filling factor (FF) reached a maximum value of 67.35 % when using the HTL layer of CuPc and a minimum value (FF) o
Styles APA, Harvard, Vancouver, ISO, etc.
35

Pandey, Manoj, Dipendra Hamal, Deepak Subedi, et al. "Deposition of Reduced Graphene Oxide Thin Film by Spray Pyrolysis Method for Perovskite Solar Cell." Journal of Nepal Physical Society 7, no. 3 (2021): 53–58. http://dx.doi.org/10.3126/jnphyssoc.v7i3.42193.

Texte intégral
Résumé :
The Perovskite absorber layer, the electron transport layer (ETL), the hole transport layer (HTL), and the transparent conducting oxide layer (TCO) are the major components that make up a Perovskite solar cell. Between ETL and HTL, the absorber layer is sandwiched, on which electron-hole pairs are created after absorption of solar radiation. Despite substantial progress toward efficiency, long-term stability still remains a serious concern. Present work focuses toward contributing on the later issue by adopting Titanium dioxide (TiO2) as ETL and reduced graphene oxide (rGO) as HTL. Specificall
Styles APA, Harvard, Vancouver, ISO, etc.
36

Assi, Ahmed Ali, Wasan R. Saleh, and Ezzedin Mohajerani. "Effect of Deposit Au thin Layer Between Layers of Perovskite Solar Cell on Cell's Performance." Iraqi Journal of Physics (IJP) 19, no. 51 (2021): 23–32. http://dx.doi.org/10.30723/ijp.v19i51.696.

Texte intégral
Résumé :
The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Halilov, S., M. L. Belayneh, M. A. Hossain, A. A. Abdallah, B. Hoex, and S. N. Rashkeev. "Optimized Ni1−xAlxO hole transport layer for silicon solar cells." RSC Advances 10, no. 38 (2020): 22377–86. http://dx.doi.org/10.1039/d0ra02982c.

Texte intégral
Résumé :
NiO alloyed with aluminum, Ni<sub>1−x</sub>Al<sub>x</sub>O, is analyzed in terms of its stoichiometry, electronic and transport properties, as well as interfacial band alignment with Si to evaluate its potential use as a hole transport layer (HTL) in p–i–n type solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zheng, Xuan, Xin Miao, Yufei Xiao та ін. "Durable polymer solar cells produced by the encapsulation of a WSe2 hole-transport layer and β-carotene as an active layer additive". Inorganic Chemistry Frontiers 9, № 8 (2022): 1785–93. http://dx.doi.org/10.1039/d1qi01458g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cheng, Chien-Jui, Rathinam Balamurugan, and Bo-Tau Liu. "Enhanced Efficiencies of Perovskite Solar Cells by Incorporating Silver Nanowires into the Hole Transport Layer." Micromachines 10, no. 10 (2019): 682. http://dx.doi.org/10.3390/mi10100682.

Texte intégral
Résumé :
In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer, and power conversion efficiency (PCE) of PVSCs were analyzed and discussed. Compared with neat PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS can significantly enhance the PCE by 25%. However, the AgNW incorporation may result in performance overestimation due to the lateral charge transfer. The c
Styles APA, Harvard, Vancouver, ISO, etc.
40

Du, Tian, Weidong Xu, Matyas Daboczi, et al. "p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching." Journal of Materials Chemistry A 7, no. 32 (2019): 18971–79. http://dx.doi.org/10.1039/c9ta03896e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

ALKARSIFI, Riva, Jörg ACKERMANN, and Olivier MARGEAT. "Hole transport layers in organic solar cells: A review." Journal of Metals, Materials and Minerals 32, no. 4 (2022): 1–22. http://dx.doi.org/10.55713/jmmm.v32i4.1549.

Texte intégral
Résumé :
Thanks to huge research efforts, organic solar cells have become serious candidates in the field of renewable energy sources, with reported power conversion efficiencies above 19% and operating lifetime surpassing decades. In the thin film stack composing the organic solar cell, the transport layers at interfaces play a key role, as important as the photoactive material itself. Both electron (ETL) and hole (HTL) transport layers are indeed directly involved in the efficiency and stability of the devices, due to the very specific properties required for these interfaces. Focusing on the HTL int
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kwon, Hannah, Ju Won Lim, Jinyoung Han, et al. "Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material." Nanoscale 11, no. 41 (2019): 19586–94. http://dx.doi.org/10.1039/c9nr05719f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Zhou, Yuanming, Sijiong Mei, Junjie Feng, et al. "Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes." RSC Advances 10, no. 44 (2020): 26381–87. http://dx.doi.org/10.1039/d0ra04425c.

Texte intégral
Résumé :
Perovskite light-emitting diodes (PeLEDs) employing CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> as the emission layer (EML) and graphene oxide (GO) doped PEDOT:PSS as the hole transport layer (HTL) were prepared and characterized.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Irannejad, Neda, Narges Yaghoobi Nia, Siavash Adhami, Enrico Lamanna, Behzad Rezaei, and Aldo Di Carlo. "Polymer/Inorganic Hole Transport Layer for Low-Temperature-Processed Perovskite Solar Cells." Energies 13, no. 8 (2020): 2059. http://dx.doi.org/10.3390/en13082059.

Texte intégral
Résumé :
In the search for improvements in perovskite solar cells (PSCs), several different aspects are currently being addressed, including an increase in the stability and a reduction in the hysteresis. Both are mainly achieved by improving the cell structure, employing new materials or novel cell arrangements. We introduce a hysteresis-free low-temperature planar PSC, composed of a poly(3-hexylthiophene) (P3HT)/CuSCN bilayer as a hole transport layer (HTL) and a mixed cation perovskite absorber. Proper adjustment of the precursor concentration and thickness of the HTL led to a homogeneous and dense
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kong, Tianyu, Genjie Yang, Pu Fan, and Junsheng Yu. "Solution-Processable NiOx:PMMA Hole Transport Layer for Efficient and Stable Inverted Organic Solar Cells." Polymers 15, no. 8 (2023): 1875. http://dx.doi.org/10.3390/polym15081875.

Texte intégral
Résumé :
For organic solar cells (OSCs), nickel oxide (NiOx) is a potential candidate as the hole transport layer (HTL) material. However, due to the interfacial wettability mismatch, developing solution-based fabrication methods of the NiOx HTL is challenging for OSCs with inverted device structures. In this work, by using N, N-dimethylformamide (DMF) to dissolve poly(methyl methacrylate) (PMMA), the polymer is successfully incorporated into the NiOx nanoparticle (NP) dispersions to modify the solution-processable HTL of the inverted OSCs. Benefiting from the improvements of electrical and surface pro
Styles APA, Harvard, Vancouver, ISO, etc.
46

Tola, Pardi Sampe. "Optimization ZnO Properties for Electron Transport Layer (ETL) of Hybrid Solar-cell Prepared with Sol-gel Method Combined with Reflux Treatment." International Journal of Eco-Innovation in Science and Engineering 3, no. 01 (2022): 30–34. http://dx.doi.org/10.33005/ijeise.v3i01.61.

Texte intégral
Résumé :
Electron-hole pair (exciton) generation and extraction from solar-cell photoactive layer is the main parameters determined solar-cell performance. Generally solar-cell consists of a photoactive layer sandwiched between electron transport layer (ETL) and hole transport layer (HTL). Exciton separation and extraction from photoactive layer depend on several properties: energy level match of photoactive layer and charge transport layer, surface contact area of photoactive layer and charge transport layer, and charge transport properties of charge transport layer. ETL and HTL should meet several ch
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kanwat, Anil, V. Sandhya Rani, and Jin Jang. "Improved power conversion efficiency of perovskite solar cells using highly conductive WOx doped PEDOT:PSS." New Journal of Chemistry 42, no. 19 (2018): 16075–82. http://dx.doi.org/10.1039/c8nj04131h.

Texte intégral
Résumé :
Poly(3,4-thylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, is a popular and cost effective conducting polymer for electrodes that can also be used as a hole transport layer (HTL) in optoelectronics.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lu, Chaoqun, Weijia Zhang, Zhaoyi Jiang, Yulong Zhang, and Cong Ni. "CuI/Spiro-OMeTAD Double-Layer Hole Transport Layer to Improve Photovoltaic Performance of Perovskite Solar Cells." Coatings 11, no. 8 (2021): 978. http://dx.doi.org/10.3390/coatings11080978.

Texte intégral
Résumé :
The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the pero
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wu, Yuhan, and Guofan Duan. "Inverted Planar Perovskite Solar Cells with High Electrical Conductivity and Efficiency by KBr-Doped PEDOT:PSS." ECS Journal of Solid State Science and Technology 11, no. 2 (2022): 025005. http://dx.doi.org/10.1149/2162-8777/ac4d81.

Texte intégral
Résumé :
The photovoltaic performance of inverted perovskite solar cells (PSCs) is highly determined by the conductivity and charge transfer efficiency of the hole transport layer (HTL). In order to further strengthen the overall role of HTL, herein, Potassium bromide (KBr) is utilized into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to improve its own conductivity and interfacial charge transfer. The champion power conversion efficiency (PCE) of the PSCs based on KBr doped HTL is 18.43% with negligible hysteresis, which is higher than the control device with 15.82%. In all phot
Styles APA, Harvard, Vancouver, ISO, etc.
50

Asare, Joseph, Dahiru M. Sanni, Benjamin Agyei-Tuffour, et al. "A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells." Energies 14, no. 7 (2021): 1949. http://dx.doi.org/10.3390/en14071949.

Texte intégral
Résumé :
This paper presents the effect of a composite poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS and copper-doped nickel oxide (Cu:NiOx) hole transport layer (HTL) on the performance of perovskite solar cells (PSCs). Thin films of Cu:NiOx were spin-coated onto fluorine-doped tin oxide (FTO) glass substrates using a blend of nickel acetate tetrahydrate, 2-methoxyethanol and monoethanolamine (MEA) and copper acetate monohydrate. The prepared solution was stirred at 65 °C for 4 h and spin-coated onto the FTO substrates at 3000 rpm for 30 s in a nitrogen glovebox. The Cu:NiOx/FTO/gla
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!