Articles de revues sur le sujet « Hole Transport layer (HTL) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Hole Transport layer (HTL) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Mehdi, S., R. Amraoui, and A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials." Digest Journal of Nanomaterials and Biostructures 17, no. 3 (2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.
Texte intégralLi, Wang, Hui Liu, Changwen Liu, et al. "Approaching optimal hole transport layers by an organic monomolecular strategy for efficient inverted perovskite solar cells." Journal of Materials Chemistry A 8, no. 32 (2020): 16560–69. http://dx.doi.org/10.1039/c9ta13167a.
Texte intégralRahime, N. A. H., A. Azis, M. Z. M. Yusoff, and M. S. Yahya. "Ray tracing analysis of CH3NH3PBI3-based perovskite solar cells: effects of various perovskite, ETL and HTL thicknesses." Journal of Optoelectronic and Biomedical Materials 17, no. 2 (2025): 99–107. https://doi.org/10.15251/jobm.2025.172.99.
Texte intégralKim, Jeong-Beom, Jae-In Yoo, Hyo-Bin Kim, Jincheol Jang, and Jang-Kun Song. "28‐5: Late‐News Paper: Investigation on Enhanced Performance of All†solution Inverted Quantum Dot Light Emitting Diode via Changing a Solvent." SID Symposium Digest of Technical Papers 55, no. 1 (2024): 364–66. http://dx.doi.org/10.1002/sdtp.17532.
Texte intégralZhang, Kaixuan, Dongwei Sun, Ying Chen, and Dong Fu. "60‐2: Observation of subtle interfacial mixing in solution‐processed OLEDs." SID Symposium Digest of Technical Papers 55, S1 (2024): 509–11. http://dx.doi.org/10.1002/sdtp.17126.
Texte intégralYoo, Jae-In, Hyobin Kim, Sung-Cheon Kang, et al. "P‐162: Late‐News Poster: Analysis of Various solvents for Hole Transport Layer in Tandem Structure Quantum Dot Light Emitting Diode." SID Symposium Digest of Technical Papers 54, no. 1 (2023): 1766–69. http://dx.doi.org/10.1002/sdtp.16946.
Texte intégralXu, Ao, Qichuan Huang, Kaiying Luo, et al. "Efficient Nanocrystal Photovoltaics with PTAA as Hole Transport Layer." Nanomaterials 12, no. 17 (2022): 3067. http://dx.doi.org/10.3390/nano12173067.
Texte intégralXu, Shihui, Lin Yang, Zhe Wang, et al. "Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells." Materials 18, no. 2 (2025): 415. https://doi.org/10.3390/ma18020415.
Texte intégralHe, Lijuan, Deyu Wang, Yan Zhao, Yiqi Zhang, Wei Wei, and Liang Shen. "Efficient hole transport layers based on cross-linked poly(N-vinylcarbazole) for high-performance perovskite photodetectors." Journal of Materials Chemistry C 9, no. 35 (2021): 11722–28. http://dx.doi.org/10.1039/d1tc01367j.
Texte intégralDzikri, Istighfari, Michael Hariadi, Retno Wigajatri Purnamaningsih, and Nji Raden Poespawati. "Analysis of the role of hole transport layer materials to the performance of perovskite solar cell." E3S Web of Conferences 67 (2018): 01021. http://dx.doi.org/10.1051/e3sconf/20186701021.
Texte intégralKim, Sunkyu, Wonjong Lee, Zobia Irshad, et al. "Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films." Energies 17, no. 9 (2024): 2062. http://dx.doi.org/10.3390/en17092062.
Texte intégralSalman, Muhammad Umar, Muhammad Mehak, Umair Ali, et al. "Direct correlation between open-circuit voltage and quasi-fermi level splitting in perovskite solar cells: a computational step involving thickness, doping, lifetime, and temperature variations for green solutions." RSC Advances 15, no. 20 (2025): 15618–29. https://doi.org/10.1039/d5ra01868d.
Texte intégralTiwari, Pooja, Maged F. Alotaibi, Yas Al-Hadeethi, et al. "Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer." Nanomaterials 12, no. 14 (2022): 2506. http://dx.doi.org/10.3390/nano12142506.
Texte intégralSaidani, Okba, Souraya Goumri-Said, Abderrahim Yousfi, Girija Shankar Sahoo, and Mohammed Benali Kanoun. "Probing high-efficiency Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3-based perovskite solar cells through first principles computations and SCAPS-1D simulation." RSC Advances 15, no. 10 (2025): 7342–53. https://doi.org/10.1039/d4ra08323g.
Texte intégralXu, Yao, Qiaoli Niu, Ling Zhang, et al. "Highly Efficient Perovskite Solar Cell Based on PVK Hole Transport Layer." Polymers 14, no. 11 (2022): 2249. http://dx.doi.org/10.3390/polym14112249.
Texte intégralObi, U. C., D. M. Sanni, and A. Bello. "Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells." Физика и техника полупроводников 55, no. 4 (2021): 354. http://dx.doi.org/10.21883/ftp.2021.04.50738.9386a.
Texte intégralObi, U. C., D. M. Sanni, and A. Bello. "Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells." Физика и техника полупроводников 55, no. 4 (2021): 354. http://dx.doi.org/10.21883/ftp.2021.04.50738.9386a.
Texte intégralShehu, Y., S. A. M. Samsuri, and N. M. Ahmed. "Hole transport layers performance analysis of lead-free perovskite solar cell using scaps-1D." IOP Conference Series: Earth and Environmental Science 1281, no. 1 (2023): 012032. http://dx.doi.org/10.1088/1755-1315/1281/1/012032.
Texte intégralHuang, Rui, and Jiyu Tang. "Simulation studies on the electron transport layer based perovskite solar cell to achieve high photovoltaic efficiency." Journal of Physics: Conference Series 2083, no. 2 (2021): 022011. http://dx.doi.org/10.1088/1742-6596/2083/2/022011.
Texte intégralRomashkin, A. V., Yu A. Polikarpov, G. O. Silakov, and E. V. Alexandrov. "Spray deposited thin uniform NiO/Spiro-OMeTAD composite hole transport layer with top carbon nanotube electrode." Journal of Physics: Conference Series 2086, no. 1 (2021): 012097. http://dx.doi.org/10.1088/1742-6596/2086/1/012097.
Texte intégralZaidi, B., N. Mekhaznia, M. S. Ullah, and H. Al-Dmour. "Evaluating the Efficiency of CuInGaSe2 Based Solar Cells: CuSCN Hole Transport Layer (HTL) Effect." Journal of Physics: Conference Series 2843, no. 1 (2024): 012012. http://dx.doi.org/10.1088/1742-6596/2843/1/012012.
Texte intégralIbrahim, M. H., M. R. Salim, M. Y. Mohd Nor, A. S. Abdullah, and A. I. Azmi. "Quaternary chalcogenides as transport layers in solid-state DSSC: a feasibility studyQuaternary chalcogenides as transport layers in solid-state DSSC: a feasibility study." Chalcogenide Letters 22, no. 6 (2025): 551–60. https://doi.org/10.15251/cl.2025.226.551.
Texte intégralZhou, Zhongmin, and Shuping Pang. "Highly efficient inverted hole-transport-layer-free perovskite solar cells." Journal of Materials Chemistry A 8, no. 2 (2020): 503–12. http://dx.doi.org/10.1039/c9ta10694d.
Texte intégralLiu, Wei, Qingxia Liu, Jianhua Xiao, et al. "Performance enhancement of an organic photodetector enabled by NPB modified hole transport layer." Journal of Physics D: Applied Physics 55, no. 23 (2022): 234001. http://dx.doi.org/10.1088/1361-6463/ac5990.
Texte intégralLei, Ting, Hua Dong, Jun Xi, et al. "Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine." Chemical Communications 54, no. 48 (2018): 6177–80. http://dx.doi.org/10.1039/c8cc03672a.
Texte intégralLiu, Yu, Bicui Li, Jia Xu, and Jianxi Yao. "Improvement of Thermal Stability and Photoelectric Performance of Cs2PbI2Cl2/CsPbI2.5Br0.5 Perovskite Solar Cells by Triple-Layer Inorganic Hole Transport Materials." Nanomaterials 14, no. 9 (2024): 742. http://dx.doi.org/10.3390/nano14090742.
Texte intégralSon, Hyung Jin, Hong-Kwan Park, Ji Yeon Moon, Byeong-Kwon Ju, and Sung Hyun Kim. "Thermal degradation related to the PEDOT:PSS hole transport layer and back electrode of the flexible inverted organic photovoltaic module." Sustainable Energy & Fuels 4, no. 4 (2020): 1974–83. http://dx.doi.org/10.1039/c9se00811j.
Texte intégralChaudhary, Neeraj, Rajiv Chaudhary, J. P. Kesari, Asit Patra, and Suresh Chand. "Copper thiocyanate (CuSCN): an efficient solution-processable hole transporting layer in organic solar cells." Journal of Materials Chemistry C 3, no. 45 (2015): 11886–92. http://dx.doi.org/10.1039/c5tc03124a.
Texte intégralGhoreishi, Farzaneh S., Vahid Ahmadi, Maryam Alidaei, et al. "Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA2PbI4 interfacial layer." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1675–84. http://dx.doi.org/10.1039/d1cp04863e.
Texte intégralAli, Israt, Muhammad Faraz Ud Din, Daniele T. Cuzzupè, et al. "Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells." Molecules 27, no. 21 (2022): 7452. http://dx.doi.org/10.3390/molecules27217452.
Texte intégralGe, Jing, Weixin Li, Xuan He, et al. "Hybrid CdSe/CsPbI3 quantum dots for interface engineering in perovskite solar cells." Sustainable Energy & Fuels 4, no. 4 (2020): 1837–43. http://dx.doi.org/10.1039/c9se01205b.
Texte intégralMa, Yunping, Jiandong Fan, Cuiling Zhang, Hongliang Li, Wenzhe Li, and Yaohua Mai. "Enhanced charge collection and stability in planar perovskite solar cells based on a cobalt(iii)-complex additive." RSC Advances 7, no. 60 (2017): 37654–58. http://dx.doi.org/10.1039/c7ra05741e.
Texte intégralJung, Sehyun, Seungsun Choi, Woojin Shin, et al. "Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer." Polymers 15, no. 3 (2023): 772. http://dx.doi.org/10.3390/polym15030772.
Texte intégralMukametkali, T. M., A. K. Aimukhanov, and A. K. Zeinidenov. "Phthalocyanine and metal phthalocyanine are hole transport buffer layers for perovskite solar cell fabrication." Bulletin of the Karaganda University "Physics Series" 11529, no. 3 (2024): 41–50. http://dx.doi.org/10.31489/2024ph3/41-50.
Texte intégralPandey, Manoj, Dipendra Hamal, Deepak Subedi, et al. "Deposition of Reduced Graphene Oxide Thin Film by Spray Pyrolysis Method for Perovskite Solar Cell." Journal of Nepal Physical Society 7, no. 3 (2021): 53–58. http://dx.doi.org/10.3126/jnphyssoc.v7i3.42193.
Texte intégralAssi, Ahmed Ali, Wasan R. Saleh, and Ezzedin Mohajerani. "Effect of Deposit Au thin Layer Between Layers of Perovskite Solar Cell on Cell's Performance." Iraqi Journal of Physics (IJP) 19, no. 51 (2021): 23–32. http://dx.doi.org/10.30723/ijp.v19i51.696.
Texte intégralHalilov, S., M. L. Belayneh, M. A. Hossain, A. A. Abdallah, B. Hoex, and S. N. Rashkeev. "Optimized Ni1−xAlxO hole transport layer for silicon solar cells." RSC Advances 10, no. 38 (2020): 22377–86. http://dx.doi.org/10.1039/d0ra02982c.
Texte intégralZheng, Xuan, Xin Miao, Yufei Xiao та ін. "Durable polymer solar cells produced by the encapsulation of a WSe2 hole-transport layer and β-carotene as an active layer additive". Inorganic Chemistry Frontiers 9, № 8 (2022): 1785–93. http://dx.doi.org/10.1039/d1qi01458g.
Texte intégralCheng, Chien-Jui, Rathinam Balamurugan, and Bo-Tau Liu. "Enhanced Efficiencies of Perovskite Solar Cells by Incorporating Silver Nanowires into the Hole Transport Layer." Micromachines 10, no. 10 (2019): 682. http://dx.doi.org/10.3390/mi10100682.
Texte intégralDu, Tian, Weidong Xu, Matyas Daboczi, et al. "p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching." Journal of Materials Chemistry A 7, no. 32 (2019): 18971–79. http://dx.doi.org/10.1039/c9ta03896e.
Texte intégralALKARSIFI, Riva, Jörg ACKERMANN, and Olivier MARGEAT. "Hole transport layers in organic solar cells: A review." Journal of Metals, Materials and Minerals 32, no. 4 (2022): 1–22. http://dx.doi.org/10.55713/jmmm.v32i4.1549.
Texte intégralKwon, Hannah, Ju Won Lim, Jinyoung Han, et al. "Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material." Nanoscale 11, no. 41 (2019): 19586–94. http://dx.doi.org/10.1039/c9nr05719f.
Texte intégralZhou, Yuanming, Sijiong Mei, Junjie Feng, et al. "Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes." RSC Advances 10, no. 44 (2020): 26381–87. http://dx.doi.org/10.1039/d0ra04425c.
Texte intégralIrannejad, Neda, Narges Yaghoobi Nia, Siavash Adhami, Enrico Lamanna, Behzad Rezaei, and Aldo Di Carlo. "Polymer/Inorganic Hole Transport Layer for Low-Temperature-Processed Perovskite Solar Cells." Energies 13, no. 8 (2020): 2059. http://dx.doi.org/10.3390/en13082059.
Texte intégralKong, Tianyu, Genjie Yang, Pu Fan, and Junsheng Yu. "Solution-Processable NiOx:PMMA Hole Transport Layer for Efficient and Stable Inverted Organic Solar Cells." Polymers 15, no. 8 (2023): 1875. http://dx.doi.org/10.3390/polym15081875.
Texte intégralTola, Pardi Sampe. "Optimization ZnO Properties for Electron Transport Layer (ETL) of Hybrid Solar-cell Prepared with Sol-gel Method Combined with Reflux Treatment." International Journal of Eco-Innovation in Science and Engineering 3, no. 01 (2022): 30–34. http://dx.doi.org/10.33005/ijeise.v3i01.61.
Texte intégralKanwat, Anil, V. Sandhya Rani, and Jin Jang. "Improved power conversion efficiency of perovskite solar cells using highly conductive WOx doped PEDOT:PSS." New Journal of Chemistry 42, no. 19 (2018): 16075–82. http://dx.doi.org/10.1039/c8nj04131h.
Texte intégralLu, Chaoqun, Weijia Zhang, Zhaoyi Jiang, Yulong Zhang, and Cong Ni. "CuI/Spiro-OMeTAD Double-Layer Hole Transport Layer to Improve Photovoltaic Performance of Perovskite Solar Cells." Coatings 11, no. 8 (2021): 978. http://dx.doi.org/10.3390/coatings11080978.
Texte intégralWu, Yuhan, and Guofan Duan. "Inverted Planar Perovskite Solar Cells with High Electrical Conductivity and Efficiency by KBr-Doped PEDOT:PSS." ECS Journal of Solid State Science and Technology 11, no. 2 (2022): 025005. http://dx.doi.org/10.1149/2162-8777/ac4d81.
Texte intégralAsare, Joseph, Dahiru M. Sanni, Benjamin Agyei-Tuffour, et al. "A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells." Energies 14, no. 7 (2021): 1949. http://dx.doi.org/10.3390/en14071949.
Texte intégral