Articles de revues sur le sujet « HTS sequencing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « HTS sequencing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Vuorio, Kristiina, Anita Mäki, Pauliina Salmi, Sanni Aalto, Marja Tiirola, and Marko Järvinen. "Consistency between high throughput sequencing and microscopy-based morphological characterization of phytoplankton communities." ARPHA Conference Abstracts 4 (March 4, 2021): e64972. https://doi.org/10.3897/aca.4.e64972.
Texte intégralKomarova, Natalia, Daria Barkova, and Alexander Kuznetsov. "Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology." International Journal of Molecular Sciences 21, no. 22 (2020): 8774. http://dx.doi.org/10.3390/ijms21228774.
Texte intégralPérez-Losada, Marcos, Miguel Arenas, Juan Carlos Galán, et al. "High-throughput sequencing (HTS) for the analysis of viral populations." Infection, Genetics and Evolution 80 (June 2020): 104208. http://dx.doi.org/10.1016/j.meegid.2020.104208.
Texte intégralHe, Xuejun, Ningzhi Zhang, Wenye Cao, Yiqiao Xing, and Ning Yang. "Application Progress of High-Throughput Sequencing in Ocular Diseases." Journal of Clinical Medicine 11, no. 12 (2022): 3485. http://dx.doi.org/10.3390/jcm11123485.
Texte intégralGIZA, ALEKSANDRA, EWELINA IWAN, ARKADIUSZ BOMBA, and DARIUSZ WASYL. "Basics of high throughput sequencing Summary." Medycyna Weterynaryjna 77, no. 11 (2025): 6589–2025. http://dx.doi.org/10.21521/mw.6594.
Texte intégralAronesty, Erik. "Comparison of Sequencing Utility Programs." Open Bioinformatics Journal 7, no. 1 (2013): 1–8. http://dx.doi.org/10.2174/1875036201307010001.
Texte intégralPu, Dan, and Pengfeng Xiao. "A real-time decoding sequencing technology—new possibility for high throughput sequencing." RSC Advances 7, no. 64 (2017): 40141–51. http://dx.doi.org/10.1039/c7ra06202h.
Texte intégralMalapi-Wight, Martha, Bishwo Adhikari, Jing Zhou, et al. "HTS-Based Diagnostics of Sugarcane Viruses: Seasonal Variation and Its Implications for Accurate Detection." Viruses 13, no. 8 (2021): 1627. http://dx.doi.org/10.3390/v13081627.
Texte intégralMa, Hailun, Trent J. Bosma, and Arifa S. Khan. "Long-Read High-Throughput Sequencing (HTS) Revealed That the Sf-Rhabdovirus X+ Genome Contains a 3.7 kb Internal Duplication." Viruses 15, no. 10 (2023): 1998. http://dx.doi.org/10.3390/v15101998.
Texte intégralBester, Rachelle, Chanel Steyn, Johannes H. J. Breytenbach, Rochelle de Bruyn, Glynnis Cook, and Hans J. Maree. "Reproducibility and Sensitivity of High-Throughput Sequencing (HTS)-Based Detection of Citrus Tristeza Virus and Three Citrus Viroids." Plants 11, no. 15 (2022): 1939. http://dx.doi.org/10.3390/plants11151939.
Texte intégralDroege, Gabriele, Jonas Zimmermann, Tim Fulcher, der Linde Sietse Van, and Walter Berendsohn. "Environmental samples, eDNA and HTS libraries – data standard proposals from the Global Genome Biodiversity Network (GGBN)." Biodiversity Information Science and Standards 1 (August 21, 2017): e20483. https://doi.org/10.3897/tdwgproceedings.1.20483.
Texte intégralBester, Rachelle, Glynnis Cook, and Hans J. Maree. "Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing." Viruses 13, no. 2 (2021): 168. http://dx.doi.org/10.3390/v13020168.
Texte intégralKunej, Urban, Aida Dervishi, Valérie Laucou, Jernej Jakše, and Nataša Štajner. "The Potential of HTS Approaches for Accurate Genotyping in Grapevine (Vitis vinifera L.)." Genes 11, no. 8 (2020): 917. http://dx.doi.org/10.3390/genes11080917.
Texte intégralWANG, MINGBANG, XIAOMEI FAN, TAO WANG, and JINYU WU. "High-throughput sequencing of autism spectrum disorders comes of age." Genetics Research 95, no. 4 (2013): 121–29. http://dx.doi.org/10.1017/s0016672313000153.
Texte intégralFuentes, Azahara, Alicia Serrano, Blanca Ferrer Lores, et al. "Ighv Mutational Status By Deep Next Generation Sequencing Refines Ighv Sanger Sequencing Classification in Patients with Chronic Lymphocytic Leukaemia." Blood 134, Supplement_1 (2019): 3028. http://dx.doi.org/10.1182/blood-2019-129145.
Texte intégralGIZA, ALEKSANDRA, EWELINA IWAN, and DARIUSZ WASYL. "Application of high throughput sequencing in veterinary science." Medycyna Weterynaryjna 78, no. 02 (2022): 6622–2022. http://dx.doi.org/10.21521/mw.6622.
Texte intégralNess, Tara E., Andrew DiNardo, and Maha R. Farhat. "High Throughput Sequencing for Clinical Tuberculosis: An Overview." Pathogens 11, no. 11 (2022): 1343. http://dx.doi.org/10.3390/pathogens11111343.
Texte intégralXu, Chonghe, Dangui Zhou, and Mei Zhu. "High throughput sequencing technology and its clinical application in circulating tumor DNA detection in patients with tumors." Investigación Clínica 65, no. 4 (2024): 476–94. https://doi.org/10.54817/ic.v65n4a09.
Texte intégralBoegel, Sebastian, John C. Castle, and Andreas Schwarting. "Current status of use of high throughput nucleotide sequencing in rheumatology." RMD Open 7, no. 1 (2021): e001324. http://dx.doi.org/10.1136/rmdopen-2020-001324.
Texte intégralVillamor, D. E. V., T. Ho, M. Al Rwahnih, R. R. Martin, and I. E. Tzanetakis. "High Throughput Sequencing For Plant Virus Detection and Discovery." Phytopathology® 109, no. 5 (2019): 716–25. http://dx.doi.org/10.1094/phyto-07-18-0257-rvw.
Texte intégralKurtz, David M., Michael R. Green, Scott V. Bratman, et al. "Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing." Blood 125, no. 24 (2015): 3679–87. http://dx.doi.org/10.1182/blood-2015-03-635169.
Texte intégralGlasa, Miroslav, Katarína Šoltys, Lukáš Predajňa, et al. "High-throughput sequencing of Potato virus M from tomato in Slovakia reveals a divergent variant of the virus." Plant Protection Science 55, No. 3 (2019): 159–66. http://dx.doi.org/10.17221/144/2018-pps.
Texte intégralWu, David, Ryan O. Emerson, Anna Sherwood, et al. "Robust Detection Of Minimal Residual Disease In Unselected Patients With B-Cell Precursor Acute Lymphoblastic Leukemia By High-Throughput Sequencing Of IGH." Blood 122, no. 21 (2013): 2550. http://dx.doi.org/10.1182/blood.v122.21.2550.2550.
Texte intégralJavaran, Vahid Jalali, Peter Moffett, Pierre Lemoyne, Dong Xu, Charith Raj Adkar-Purushothama, and Mamadou Lamine Fall. "Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics." Plants 10, no. 11 (2021): 2355. http://dx.doi.org/10.3390/plants10112355.
Texte intégralEspindola, Andres S., and Kitty F. Cardwell. "Microbe Finder (MiFi®): Implementation of an Interactive Pathogen Detection Tool in Metagenomic Sequence Data." Plants 10, no. 2 (2021): 250. http://dx.doi.org/10.3390/plants10020250.
Texte intégralNellimarla, Srinivas, and Prasad Kesanakurti. "Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products." Vaccines 11, no. 3 (2023): 527. http://dx.doi.org/10.3390/vaccines11030527.
Texte intégralSoltani, Nourolah, Kristian A. Stevens, Vicki Klaassen, Min-Sook Hwang, Deborah A. Golino, and Maher Al Rwahnih. "Quality Assessment and Validation of High-Throughput Sequencing for Grapevine Virus Diagnostics." Viruses 13, no. 6 (2021): 1130. http://dx.doi.org/10.3390/v13061130.
Texte intégralBai, Ling, Liu He, Penghao Yu, et al. "Molecular Characterization of Mycobiota and Aspergillus Species from Eupolyphaga sinensis Walker Based on High-Throughput Sequencing of ITS1 and CaM." Journal of Food Quality 2020 (May 7, 2020): 1–7. http://dx.doi.org/10.1155/2020/1752415.
Texte intégralFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (June 12, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Texte intégralFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (June 7, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Texte intégralFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 3, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Texte intégralFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 10, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Texte intégralFeijoo, M., and A. Parada. "Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage." Molecular Phylogenetics and Evolution 113 (July 17, 2017): 76–83. https://doi.org/10.5281/zenodo.13482191.
Texte intégralRajter, Ľubomír, and Micah Dunthorn. "Ciliate SSU-rDNA reference alignments and trees for phylogenetic placements of metabarcoding data." Metabarcoding and Metagenomics 5 (August 30, 2021): e69602. https://doi.org/10.3897/mbmg.5.69602.
Texte intégralEspindola, Andres S. "Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection Pipelines." Biology 13, no. 9 (2024): 700. http://dx.doi.org/10.3390/biology13090700.
Texte intégralRuiz-García, Ana Belén, Celia Canales, Félix Morán, Manuel Ruiz-Torres, Magdalena Herrera-Mármol, and Antonio Olmos. "Characterization of Spanish Olive Virome by High Throughput Sequencing Opens New Insights and Uncertainties." Viruses 13, no. 11 (2021): 2233. http://dx.doi.org/10.3390/v13112233.
Texte intégralKrehenwinkel, Pomerantz, and Prost. "Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current Uses and Future Directions." Genes 10, no. 11 (2019): 858. http://dx.doi.org/10.3390/genes10110858.
Texte intégralBastida, José María, Rocío Benito, María Luisa Lozano, et al. "Molecular Diagnosis of Inherited Coagulation and Bleeding Disorders." Seminars in Thrombosis and Hemostasis 45, no. 07 (2019): 695–707. http://dx.doi.org/10.1055/s-0039-1687889.
Texte intégralScherer, Florian, David M. Kurtz, Maximilian Diehn, and Ash A. Alizadeh. "High-throughput sequencing for noninvasive disease detection in hematologic malignancies." Blood 130, no. 4 (2017): 440–52. http://dx.doi.org/10.1182/blood-2017-03-735639.
Texte intégralYin, Mengxue, and Wenxing Xu. "Special Issue: “Evolution, Ecology and Diversity of Plant Virus”." Viruses 15, no. 2 (2023): 487. http://dx.doi.org/10.3390/v15020487.
Texte intégralSiddique, Abu Bakar, Anis Mahmud Khokon, and Martin Unterseher. "What do we learn from cultures in the omics age? High-throughput sequencing and cultivation of leaf-inhabiting endophytes from beech (Fagus sylvatica L.) revealed complementary community composition but similar correlations with local habitat conditions." MycoKeys 20 (February 21, 2017): 1–16. https://doi.org/10.3897/mycokeys.20.11265.
Texte intégralKenzhebekova, Roza, Pozharskiy A.S.,, Kostyukova V.S, and Gritsenko D.A.,. "HIGH-THROUGHPUT SEQUENCING FOR DETECTION OF POTATO VIRUSES IN NORTHERN KAZAKHSTAN." Ġylym ža̋ne bìlìm 2, no. 3(76) (2024): 3–14. https://doi.org/10.52578/2305-9397-2024-3-2-3-14.
Texte intégralChoi, Jiyeong, Anya Clara Osatuke, Griffin Erich, et al. "High-Throughput Sequencing Reveals Tobacco and Tomato Ringspot Viruses in Pawpaw." Plants 11, no. 24 (2022): 3565. http://dx.doi.org/10.3390/plants11243565.
Texte intégralLightbody, Gaye, Valeriia Haberland, Fiona Browne, et al. "Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application." Briefings in Bioinformatics 20, no. 5 (2019): 1795–811. http://dx.doi.org/10.1093/bib/bby051.
Texte intégralBérubé, Jean A., Patrick N. Gagné, Julien P. Ponchart, J. Phelan, A. Varga, and D. James. "Heterobasidion species detected using High Throughput Sequencing (HTS) methods on British Columbia nursery plants." Canadian Journal of Plant Pathology 41, no. 4 (2019): 560–65. http://dx.doi.org/10.1080/07060661.2019.1611665.
Texte intégralGiner, Caterina R., Irene Forn, Sarah Romac, Ramiro Logares, Colomban de Vargas, and Ramon Massana. "Environmental Sequencing Provides Reasonable Estimates of the Relative Abundance of Specific Picoeukaryotes." Applied and Environmental Microbiology 82, no. 15 (2016): 4757–66. http://dx.doi.org/10.1128/aem.00560-16.
Texte intégralLynch, Tarah, Aaron Petkau, Natalie Knox, Morag Graham, and Gary Van Domselaar. "A Primer on Infectious Disease Bacterial Genomics." Clinical Microbiology Reviews 29, no. 4 (2016): 881–913. http://dx.doi.org/10.1128/cmr.00001-16.
Texte intégralKutnjak, Denis, Lucie Tamisier, Ian Adams, et al. "A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses." Microorganisms 9, no. 4 (2021): 841. http://dx.doi.org/10.3390/microorganisms9040841.
Texte intégralAnslan, Sten, R. Henrik Nilsson, Christian Wurzbacher, Petr Baldrian, Leho Tedersoo, and Mohammad Bahram. "Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding." MycoKeys 39 (September 10, 2018): 29–40. https://doi.org/10.3897/mycokeys.39.28109.
Texte intégralFabiańska, Izabela, Stefan Borutzki, Benjamin Richter, Hon Q. Tran, Andreas Neubert, and Dietmar Mayer. "LABRADOR—A Computational Workflow for Virus Detection in High-Throughput Sequencing Data." Viruses 13, no. 12 (2021): 2541. http://dx.doi.org/10.3390/v13122541.
Texte intégral