Littérature scientifique sur le sujet « Human induce pluripotent stem cell »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Human induce pluripotent stem cell ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Human induce pluripotent stem cell"
El-Sayes, Abdullah. « Induced Pluripotent Stem Cells ». Sciential - McMaster Undergraduate Science Journal, no 1 (25 novembre 2018) : 16–22. http://dx.doi.org/10.15173/sciential.v1i1.1908.
Texte intégralCruvinel, Estela, Isabella Ogusuku, Rosanna Cerioni, Sirlene Rodrigues, Jéssica Gonçalves, Maria Elisa Góes, Juliana Morais Alvim et al. « Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity ». SAGE Open Medicine 8 (janvier 2020) : 205031212096645. http://dx.doi.org/10.1177/2050312120966456.
Texte intégralLoh, Yuin-Han, Suneet Agarwal, In-Hyun Park, Achia Urbach, Hongguang Huo, Garrett C. Heffner, Kitai Kim, Justine D. Miller, Kitwa Ng et George Q. Daley. « Generation of induced pluripotent stem cells from human blood ». Blood 113, no 22 (28 mai 2009) : 5476–79. http://dx.doi.org/10.1182/blood-2009-02-204800.
Texte intégralDinnyes, A., M. K. Pirity, E. Gocza, P. Osteil, N. Daniel, Zs Tancos, Zs Polgar et al. « GENERATION OF RABBIT PLURIPOTENT STEM CELL LINES ». Reproduction, Fertility and Development 24, no 1 (2012) : 286. http://dx.doi.org/10.1071/rdv24n1ab246.
Texte intégralYuan, Liyun, Xiaoyan Tang, Binyan Zhang et Guohui Ding. « Cell Pluripotency Levels Associated with Imprinted Genes in Human ». Computational and Mathematical Methods in Medicine 2015 (2015) : 1–8. http://dx.doi.org/10.1155/2015/471076.
Texte intégralGo, Young-Hyun, Jumee Kim, Ho-Chang Jeong, Seong-Min Kim, Yun-Jeong Kim, Soon-Jung Park, Sung-Hwan Moon et Hyuk-Jin Cha. « Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells ». Biomedicines 8, no 11 (27 octobre 2020) : 453. http://dx.doi.org/10.3390/biomedicines8110453.
Texte intégralSalloum-Asfar, Salam, Rudolf Engelke, Hanaa Mousa, Neha Goswami, I. Richard Thompson, Freshteh Palangi, Kamal Kamal et al. « Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells ». Stem Cells International 2021 (15 octobre 2021) : 1–19. http://dx.doi.org/10.1155/2021/8274936.
Texte intégralUnzu, Carmen, Marc Friedli, Alexis Bosman, Marisa E. Jaconi, Barbara E. Wildhaber et Anne-Laure Rougemont. « Human Hepatocyte-Derived Induced Pluripotent Stem Cells : MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues ». Stem Cells International 2016 (2016) : 1–16. http://dx.doi.org/10.1155/2016/4370142.
Texte intégralCantone, Irene, et Amanda G. Fisher. « Human X chromosome inactivation and reactivation : implications for cell reprogramming and disease ». Philosophical Transactions of the Royal Society B : Biological Sciences 372, no 1733 (25 septembre 2017) : 20160358. http://dx.doi.org/10.1098/rstb.2016.0358.
Texte intégralPalladino, Antonio, Isabella Mavaro, Carmela Pizzoleo, Elena De Felice, Carla Lucini, Paolo de Girolamo, Paolo A. Netti et Chiara Attanasio. « Induced Pluripotent Stem Cells as Vasculature Forming Entities ». Journal of Clinical Medicine 8, no 11 (25 octobre 2019) : 1782. http://dx.doi.org/10.3390/jcm8111782.
Texte intégralThèses sur le sujet "Human induce pluripotent stem cell"
Matz, Peggy. « Human induced pluripotent stem cell–based modeling of hepatogenesis ». Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17530.
Texte intégralThis project generated and characterized integration-free, episomal-derived induced pluripotent stem cell lines (E-iPSCs) from human somatic cell lines of different origins. Two different somatic cell lines were used, the human fetal fibroblast cell line HFF1 and human umbilical vein endothelial cell line HUVEC. Both were reprogrammed into integration-free iPSCs and were comparable amongst themselves and to human embryonic stem cells, the gold standard of pluripotent stem cells. Furthermore, the iPSCs with different genetic background were differentiated to hepatocyte-like cells (HLCs). With the use of iPSC-derived hepatocytes different stages during hepatogenesis and the potential of maturation could be analyzed as well as compared to fetal liver and primary human hepatocytes (PHH). This study could uncover gene regulatory networks which presence bipotential progenitor populations in HLCs. Additionally, comparable transcriptome profile analyses revealed that the iPSC-derived HLCs are immature and more similar to fetal liver. However, the HLCs hold typical functionality characteristics of hepatocyte, e.g. glycogen storage, uptake and release of ICG and CDFDA, bile acid and urea secretion. Furthermore, typical structures of hepatocytes such as bile canaliculi with microvilli, lipid storage and tight junctions are visible. In order to analyze the maturation potential of HLCs a long-term culture experiment was performed using HUVEC-iPSC-derived HLCs which implies the possibility for long-term culture of HLCs while increasing maturation. Additionally, HFF1-derived iPSCs were differentiated to endodermal progenitors (EPs) to analyze the endodermal development before biliary tree and hepatoblast which can give rise to hepatocytes, cholangiocytes and pancreatic cells. The multipotent EPs hold a great potential to analyze the endodermal development of intestine, lung, liver, bile duct and gallbladder, as well as pancreas.
Chen, Xike. « Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage ». Kyoto University, 2019. http://hdl.handle.net/2433/242390.
Texte intégralZhang, Jiao, et 张姣. « Regulation of cell proliferation and modulation of differentiation in human induced pluripotent stem cell-derived mesenchumal stem cells ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617503.
Texte intégralpublished_or_final_version
Medicine
Doctoral
Doctor of Philosophy
Ratanasirintrawoot, Sutheera. « Defining markers and mechanisms of human somatic cell reprogramming ». Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11236.
Texte intégralZorzan, Irene. « Dissecting the role of TGF-beta pathway in human Pluripotent Stem Cells ». Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424722.
Texte intégralLe cellule staminali embrionali umane (hESCs) e le cellule staminali pluripotenti indotte (hiPSCs) sono caratterizzate dalla capacità di dare origine tutti i tipi cellulari presenti nell’adulto e di poterle espandere indefinitamente in vitro. Comprendere i meccanismi molecolari che controllano la pluripotenza è fondamentale per differenziare cellule pluripotenti umane in tutti i tipi cellulari utili per applicazioni cliniche. Le vie di segnalazione che mantengono la pluripotenza nelle cellule staminali pluripotenti umane sono TGF-beta e FGF. Ad oggi, sono stati identificati solo pochi fattori di trascrizione che controllano la pluripotenza, come i fattori di trascrizione OCT4, SOX2 e NANOG. Pertanto, ho utilizzato un approccio sistematico per identificare nuovi componenti del network di pluripotenza. Mi sono focalizzata sul ruolo di TGF-beta al fine di trovare target funzionali diretti che a valle di questa via di segnalazione siano in grado di mantenere lo stato di pluripotenza. Intersecando un’analisi comparativa del trascrittoma con dati relativi alla posizione nel genoma, ho ottenuto una lista di 21 fattori di trascrizione, di cui poi 8 sono stati confermati. Ulteriori test funzionali hanno portato all’identificazione di quattro fattori di trascrizione che sono in grado di mantenere hESCs e hiPSCs pluripotenti indifferenziate in assenza di TGF-beta. In particolare, uno di questi quattro fattori di trascrizione non è mai stato studiato, quindi mi sono focalizzata su di esso. Ho successivamente caratterizzato il programma trascrizionale controllato da questo fattore per capire come sia in grado di mantenere la pluripotenza. È interessante notare che questo nuovo fattore regola sia la pluripotenza che la morfologia cellulare, ossia l’identità epiteliale. Infine, il knockdown di questo fattore durante la riprogrammazione somatica riduce fortemente il numero di colonie di iPSCs ottenute.
Yamashiro, Chika. « Generation of human oogonia from induced pluripotent stem cells in vitro ». Kyoto University, 2019. http://hdl.handle.net/2433/242826.
Texte intégralRohani, Leili, Claire Fabian, Heidrun Holland, Yahaira Naaldijk, Ralf Dressel, Henry Löffler-Wirth, Hans Binder, A. Arnold et Alexandra Stolzing. « Generation of human induced pluripotent stem cells using non-synthetic mRNA ». Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-205889.
Texte intégralLau, Kei-ling Kelly, et 劉己綾. « Human pluripotent stem cells as a source of dendritic cells to induce immune tolerance ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197516.
Texte intégralpublished_or_final_version
Anatomy
Master
Master of Philosophy
Jambi, Majed. « Differentiation of Human Atrial Myocytes from Endothelial Progenitor Cell-Derived Induced Pluripotent Stem Cells ». Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31158.
Texte intégralRuiz-Torres, Sonya Jomara. « Modeling Fanconi Anemia in Squamous Epithelium using Human Induced Pluripotent Stem Cell-Derived Organoids ». University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573573103136768.
Texte intégralLivres sur le sujet "Human induce pluripotent stem cell"
Amit, M., et Joseph Itskovitz-Eldor. Atlas of human pluripotent stem cells : Derivation and culturing. New York : Humana Press, 2012.
Trouver le texte intégralSha, Jin, et SpringerLink (Online service), dir. Human Embryonic and Induced Pluripotent Stem Cells : Lineage-Specific Differentiation Protocols. Totowa, NJ : Springer Science+Business Media, LLC, 2012.
Trouver le texte intégralTurksen, Kursad, dir. Induced Pluripotent Stem Cells and Human Disease. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2585-9.
Texte intégralYe, Kaiming, et Sha Jin, dir. Human Embryonic and Induced Pluripotent Stem Cells. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-267-0.
Texte intégralSong, Loujin. Development of Novel Therapeutics for Timothy Syndrome Using Human Induced Pluripotent Stem Cells. [New York, N.Y.?] : [publisher not identified], 2017.
Trouver le texte intégralPluripotent circulations : Putting actor-network theory to work on stem cells in the USA, prior to 2001. Göteborg : Acta Universitatis Gothoburgensis, 2006.
Trouver le texte intégralItskovitz-Eldor, Joseph, et Michal Amit. Atlas of Human Pluripotent Stem Cells : Derivation and Culturing. Humana, 2016.
Trouver le texte intégralItskovitz-Eldor, Joseph, et Michal Amit. Atlas of Human Pluripotent Stem Cells : Derivation and Culturing. Springer, 2011.
Trouver le texte intégralYe, Kaiming, et Sha Jin. Human Embryonic and Induced Pluripotent Stem Cells : Lineage-Specific Differentiation Protocols. Humana Press, 2016.
Trouver le texte intégralNat, Roxana, et Andreas Eigentler. Cell Culture, iPS Cells and Neurodegenerative Diseases. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0013.
Texte intégralChapitres de livres sur le sujet "Human induce pluripotent stem cell"
Liu, Hua, Pooja Chaudhari, Su Mi Choi et Yoon-Young Jang. « Applications of Human Induced Pluripotent Stem Cell Derived Hepatocytes ». Dans Stem Cells and Cancer Stem Cells,Volume 3, 213–20. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2415-0_21.
Texte intégralMedrano, Jose V., Carlos Simon et Renee Reijo Pera. « Human Germ Cell Differentiation from Pluripotent Embryonic Stem Cells and Induced Pluripotent Stem Cells ». Dans Methods in Molecular Biology, 563–78. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0659-8_27.
Texte intégralLaevsky, Ilana. « Karyotype and Fluorescent In Situ Hybridization Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Lines ». Dans Atlas of Human Pluripotent Stem Cells, 115–26. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_8.
Texte intégralProts, Iryna, Beate Winner et Jürgen Winkler. « Modelling human neurodegeneration using induced pluripotent stem cells ». Dans The Matrix of Stem Cell Research, 97–110. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. : Routledge, 2019. http://dx.doi.org/10.4324/9781315104386-7.
Texte intégralAmit, Michal, et Joseph Itskovitz-Eldor. « Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders ». Dans Atlas of Human Pluripotent Stem Cells, 15–39. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_2.
Texte intégralOmole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba et Khawaja Husnain Haider. « Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research ». Dans Handbook of Stem Cell Therapy, 1161–77. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2655-6_21.
Texte intégralOmole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba et Khawaja Husnain Haider. « Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research ». Dans Handbook of Stem Cell Therapy, 1–17. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6016-0_21-1.
Texte intégralLebrin, Franck. « Modeling Human Genetic Disorders Using Induced Pluripotent Stem Cells ». Dans Stem Cell Biology and Regenerative Medicine, 283–98. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003339601-13.
Texte intégralKane, Nicole M., Chris Denning et Andrew H. Baker. « Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells : Viral and Non-viral Approaches ». Dans Stem Cell Engineering, 159–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11865-4_7.
Texte intégralDominko, Tanja. « Cellular Reprogramming : Current Technology, Perspectives, and Generation of Induced Pluripotent Cells ». Dans Human Stem Cell Technology and Biology, 297–310. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470889909.ch25.
Texte intégralActes de conférences sur le sujet "Human induce pluripotent stem cell"
Singh, Ankur, Shalu Suri, Ted T. Lee, Jamie M. Chilton, Steve L. Stice, Hang Lu, Todd C. McDevitt et Andrés J. Garcia. « Adhesive Signature-Based, Label-Free Isolation of Human Pluripotent Stem Cells ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80044.
Texte intégralRodriguez, Marita L., Charles E. Murry et Nathan J. Sniadecki. « Assessment of Induced Pluripotent Stem Cell-Derived Cardiomyocyte Contractility Using Micropost Arrays ». Dans ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14640.
Texte intégralMiranda, Claudia Canelas. « Towards fully defined culture systems for human induced pluripotent stem cell expansion ». Dans 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2012. http://dx.doi.org/10.1109/enbeng.2012.6331387.
Texte intégralKasai, Tomonari, Kenta Hoshikawa, Shuto Takejiri, Masashi Ikeda, Kazuki Kumon, Anna Sanchez Calle, Arun Vaidyanath, Akifumi Mizutani, Chen Ling et Masaharu Seno. « Abstract LB-144 : Derivation of a model of cancer stem cell from human induced pluripotent stem cells ». Dans Proceedings : AACR 106th Annual Meeting 2015 ; April 18-22, 2015 ; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-144.
Texte intégralBudkova, Katerina, Tereza Novakova, Petr Vodicka et Katerina Vodickova Kepkova. « A40 Human induced pluripotent stem cell as a model system for Huntington’s disease ». Dans EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.40.
Texte intégralSchmieder, F., R. Habibey, V. Busskamp, J. W. Czarske et L. Büttner. « Adaptive Holographic Optogenetic Illumination for Human Neural Network Analysis ». Dans Digital Holography and Three-Dimensional Imaging. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w4a.7.
Texte intégralKim, R., R. Petrut et H. Zhang. « Generation of Phenotype-Stable Alveolar Epithelial Type II Cell from Human Induced Pluripotent Stem Cells ». Dans American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7418.
Texte intégralChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Slo-Li Chu, Chih-Yung Hsu et Ming-Dar Tsai. « Human Induced Pluripotent Stem Cell Reprogramming Prediction in Microscopy Images using LSTM based RNN ». Dans 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857568.
Texte intégralChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Cheng-Yu Lin et Ming-Dar Tsai. « Human induced pluripotent stem cell region recognition in microscopy images using Convolutional Neural Networks ». Dans 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037747.
Texte intégralFolkmanaite, Milda, Xin Zhou, Francesca Margara, Manuela Zaccolo et Blanca Rodriguez. « In Silico Human Induced Pluripotent Stem Cell Derived Cardiomyocyte Electro-Mechanical Modelling and Simulation ». Dans 2021 Computing in Cardiology (CinC). IEEE, 2021. http://dx.doi.org/10.23919/cinc53138.2021.9662938.
Texte intégralRapports d'organisations sur le sujet "Human induce pluripotent stem cell"
Ying, Mingyao. Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells. Fort Belvoir, VA : Defense Technical Information Center, juillet 2015. http://dx.doi.org/10.21236/ada620932.
Texte intégralPailino, Lia, Lihua Lou, Alberto Sesena Rubfiaro, Jin He et Arvind Agarwal. Nanomechanical Properties of Engineered Cardiomyocytes Under Electrical Stimulation. Florida International University, octobre 2021. http://dx.doi.org/10.25148/mmeurs.009775.
Texte intégralGupta, Shweta. The Revolution of Human Organoids in Cell Biology. Natur Library, octobre 2020. http://dx.doi.org/10.47496/nl.blog.12.
Texte intégralSetaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells : A Model to Study Prostate Cancer Development. Fort Belvoir, VA : Defense Technical Information Center, juin 2014. http://dx.doi.org/10.21236/ada609443.
Texte intégralSetaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells : A Model to Study Prostate Cancer Development. Fort Belvoir, VA : Defense Technical Information Center, juin 2013. http://dx.doi.org/10.21236/ada583418.
Texte intégral