Littérature scientifique sur le sujet « Ice sheet and climate interactions »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ice sheet and climate interactions ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ice sheet and climate interactions"
Scherrenberg, Meike D. W., Constantijn J. Berends, Lennert B. Stap et Roderik S. W. van de Wal. « Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle ». Climate of the Past 19, no 2 (8 février 2023) : 399–418. http://dx.doi.org/10.5194/cp-19-399-2023.
Texte intégralGregory, J. M., O. J. H. Browne, A. J. Payne, J. K. Ridley et I. C. Rutt. « Modelling large-scale ice-sheet–climate interactions following glacial inception ». Climate of the Past 8, no 5 (11 octobre 2012) : 1565–80. http://dx.doi.org/10.5194/cp-8-1565-2012.
Texte intégralGregory, J. M., O. J. H. Browne, A. J. Payne, J. K. Ridley et I. C. Rutt. « Modelling large-scale ice-sheet–climate interactions following glacial inception ». Climate of the Past Discussions 8, no 1 (9 janvier 2012) : 169–213. http://dx.doi.org/10.5194/cpd-8-169-2012.
Texte intégralAbe-Ouchi, Ayako, et Bette Otto-Bliesner. « Ice sheet-climate interactions during the ice age cycle ». PAGES news 17, no 2 (juin 2009) : 73–74. http://dx.doi.org/10.22498/pages.17.2.73.
Texte intégralNIU, LU, GERRIT LOHMANN, SEBASTIAN HINCK, EVAN J. GOWAN et UTA KREBS-KANZOW. « The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models ». Journal of Glaciology 65, no 252 (3 juillet 2019) : 645–61. http://dx.doi.org/10.1017/jog.2019.42.
Texte intégralXie, Zhiang, Dietmar Dommenget, Felicity S. McCormack et Andrew N. Mackintosh. « GREB-ISM v1.0 : A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr ». Geoscientific Model Development 15, no 9 (10 mai 2022) : 3691–719. http://dx.doi.org/10.5194/gmd-15-3691-2022.
Texte intégralDutton, Andrea, EJ Stone et A. Carlson. « Ice sheet climate interactions : Implications for coastal engineering ». PAGES news 21, no 1 (mars 2013) : 40. http://dx.doi.org/10.22498/pages.21.1.40.
Texte intégralStap, L. B., R. S. W. van de Wal, B. de Boer, R. Bintanja et L. J. Lourens. « Interaction of ice sheets and climate during the past 800 000 years ». Climate of the Past Discussions 10, no 3 (23 juin 2014) : 2547–94. http://dx.doi.org/10.5194/cpd-10-2547-2014.
Texte intégralStap, L. B., R. S. W. van de Wal, B. de Boer, R. Bintanja et L. J. Lourens. « Interaction of ice sheets and climate during the past 800 000 years ». Climate of the Past 10, no 6 (4 décembre 2014) : 2135–52. http://dx.doi.org/10.5194/cp-10-2135-2014.
Texte intégralVan Breedam, Jonas, Philippe Huybrechts et Michel Crucifix. « A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale : CLISEMv1.0 ». Geoscientific Model Development 14, no 10 (25 octobre 2021) : 6373–401. http://dx.doi.org/10.5194/gmd-14-6373-2021.
Texte intégralThèses sur le sujet "Ice sheet and climate interactions"
Henderson, Browne Oliver James. « Numerical modelling of large-scale ice-sheet-climate interactions ». Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515704.
Texte intégralSanchez-Montes, Maria Luisa. « Climate-ice sheet-ocean interactions in the Gulf of Alaska through the Pliocene and Pleistocene ». Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12634/.
Texte intégralLadant, Jean-Baptiste. « Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV019/document.
Texte intégralOn geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out
Hoang, Thi Khanh Dieu. « A numerical approach to understanding rates of ice sheet build-up during the Quaternary ». Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASJ002.
Texte intégralDuring the Quaternary (since 2.6 Ma), ice sheets experience different advance-retreat episodes corresponding to glacial-interglacial cycles. Studying these episodic events provides a better understanding of the mechanisms behind the Earth's evolution, improving the future projection for the current global warming.Simulating ice sheet-climate interactions for long timescales requires numerical modeling approaches that sufficiently represent the real system while maintaining low computational costs. In the first part of this thesis, I utilize an Earth System of Intermediate Complexity (iLOVECLIM) coupled to the 3D ice sheet model GRISLI to simulate the abrupt ice sheet advance during the beginning of the last glacial cycle (120-115 kaBP). The results indicate glacial inceptions cannot be explained solely by the astronomical theory (the influence of orbital forcings). The roles of the biosphere and ocean through different feedback mechanisms must be included to explain the location and extent of ice sheet advance. Also, an appropriate simulation of the ice sheet accumulation process is essential to obtain results consistent with the paleo records.In the second part of the thesis, I investigate the behaviors of a multi-layer snow model BESSI to provide a more physics-based surface mass balance (SMB) simulation for iLOVECLIM-GRISLI. The snow model exhibits good results compared to a state-of-the-art Regional Climate Model MAR for the present-day climate under different ice sheet conditions. For the Last Interglacial (130-116 kaBP), BESSI forced by iLOVECLIM shows higher sensitivity to the climate forcings than the existing SMB parameterization of iLOVECLIM-GRISLI. Additionally, the SMB evolution simulated by BESSI-iLOVECLIM is also in an acceptable range compared to other studies. However, since this snow model is more physics-based than the existing parameterization, the influence of biases of iLOVECLIM is more significant for BESSI, hampering its performance. With further work to come on bias correction and the coupling method, my study paves the way for the use of BESSI in the coupling between the iLOVECLIM climate model and the GRISLI ice sheet model
Ladant, Jean-Baptiste. « Interactions climat-calotte durant la greenhouse Crétacé-Paléogène (120-34 Ma) : influence de la paléogéographie et du CO2 atmosphérique ». Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV019.
Texte intégralOn geological timescales, global climate proxies indicate that variations of large magnitude occur between the Cretaceous and the Cenozoic. On the long term, these variations are mostly determined by the equilibrium between the greenhouse gases composition of the atmosphere, primarily the CO2, and continental weathering set up by the spatial location of Earth’s landmasses. Here, the links between paleogeography and CO2 are looked upon in a climate-ice sheet interactions framework during a greenhouse period of Earth history (120 – 34 Ma). A suite of models involving both coupled and ice sheet models have been used to demonstrate that paleogeographic reorganizations have regulated the presence of ice over Antarctica during the Cretaceous. In a second time and using a similar setup, a new method for climate-ice sheet coupling have been developed and applied to the Eocene-Oligocene (EO) glaciation to yield a new scenario of ice evolution, in good agreement with data. Two feedbacks related to this glaciation and the coeval atmospheric CO2 fall are investigated. First, it is shown that the EO glaciation generates an intensification of the Antarctic Circumpolar Current. Second, within a data-model study demonstrating active Asian monsoons as old as the mid-Eocene, it is shown that the climatic change at the end of the Eocene is responsible for a reduction in the intensity of the Asian monsoon. Finally, with the aim of analysing the effect of paleogeographic changes on marine biogeochemistry during the Cenozoic, sensitivity tests to Drake Passage and Panama Seaway have been carried out
Hill, Heather W. « Abrupt climate change during the last glacial period : a Gulf of Mexico perspective ». [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001539.
Texte intégralPohl, Alexandre. « Compréhension du climat de l’Ordovicien à l’aide de la modélisation numérique ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV081.
Texte intégralThe Ordovician (485–444 Ma) is a geological period characterized by theconcomitance of a major glaciation and one of the “Big Five” mass extinction events thatpunctuated the Earth’s history. This dissertation aimed at developing a better understandingof the climatic evolution at that time through numerical modeling, in order to providea consistent picture of the glaciation. First, it was shown that the Ordovician continentalconiguration leads to a particular ocean dynamics, which induces in turn the development ofa climatic instability that allows global climate to cool suddenly in response to subtle changesin the atmospheric partial pressure of CO2 (pCO2). Secondly, an innovative climate-ice sheetcoupled model produced the irst simulation of the glaciation that is supported by geologicaldata, in the context of a decrease in pCO2. Results show that glacial onset may have occurredas early as the Mid Ordovician (465 Ma), i.e., some 20 million years earlier than thoughtinitially. In this scenario, the climatic instability is reached during the latest Ordovician andaccounts for the onset of the Hirnantian glacial maximum (445–444 Ma). Experiments conductedwith a non-vascular vegetation model reveal that the origination and expansion of theirst land plants signiicantly intensiied continental weathering during the Ordovician andpotentially drove the drop in atmospheric CO2. Finally, the interactions between climate andthe marine biosphere were investigated based on 2 complementary axes. (i) News constraintson the paleobiogeography of marine living communities were brought through the publicationof maps showing the ocean surface circulation modeled at various pCO2 levels during theEarly, Middle and Late Ordovician. (ii) The relationships between climatic variations andthe redox state of the ocean were studied using a recent ocean model with biogeochemical capabilities(MITgcm). The simulations suggest partial and global oceanic anoxic events duringthe Katian and the early Silurian respectively. They also show that anoxia is probably notresponsible for the latest Ordovician mass extinction event
Pohl, Alexandre. « Compréhension du climat de l’Ordovicien à l’aide de la modélisation numérique ». Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV081.
Texte intégralThe Ordovician (485–444 Ma) is a geological period characterized by theconcomitance of a major glaciation and one of the “Big Five” mass extinction events thatpunctuated the Earth’s history. This dissertation aimed at developing a better understandingof the climatic evolution at that time through numerical modeling, in order to providea consistent picture of the glaciation. First, it was shown that the Ordovician continentalconiguration leads to a particular ocean dynamics, which induces in turn the development ofa climatic instability that allows global climate to cool suddenly in response to subtle changesin the atmospheric partial pressure of CO2 (pCO2). Secondly, an innovative climate-ice sheetcoupled model produced the irst simulation of the glaciation that is supported by geologicaldata, in the context of a decrease in pCO2. Results show that glacial onset may have occurredas early as the Mid Ordovician (465 Ma), i.e., some 20 million years earlier than thoughtinitially. In this scenario, the climatic instability is reached during the latest Ordovician andaccounts for the onset of the Hirnantian glacial maximum (445–444 Ma). Experiments conductedwith a non-vascular vegetation model reveal that the origination and expansion of theirst land plants signiicantly intensiied continental weathering during the Ordovician andpotentially drove the drop in atmospheric CO2. Finally, the interactions between climate andthe marine biosphere were investigated based on 2 complementary axes. (i) News constraintson the paleobiogeography of marine living communities were brought through the publicationof maps showing the ocean surface circulation modeled at various pCO2 levels during theEarly, Middle and Late Ordovician. (ii) The relationships between climatic variations andthe redox state of the ocean were studied using a recent ocean model with biogeochemical capabilities(MITgcm). The simulations suggest partial and global oceanic anoxic events duringthe Katian and the early Silurian respectively. They also show that anoxia is probably notresponsible for the latest Ordovician mass extinction event
Gomez, Natalya Alissa. « On Sea Level - Ice Sheet Interactions ». Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11242.
Texte intégralEarth and Planetary Sciences
Davies, Bethan Joan. « British and Fennoscandian ice-sheet interactions during the Quaternary ». Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2225/.
Texte intégralLivres sur le sujet "Ice sheet and climate interactions"
MacAyeal, D. R. Changes in glaciers and ice sheets : Observations, modelling and environmental interactions. Sous la direction de International Glaciological Society. Cambridge, UK : International Glaciological Society, 2014.
Trouver le texte intégralAbe-Ouchi, Ayako. Ice sheet response to climate changes : A modelling approach. Zurich : Geographisches Institut ETH, 1993.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Assessment of climate variability of the Greenland Ice Sheet : Integration of in situ and satellite data. Boulder, CO : University of Colorado, Cooperative Institute for Research in Environmental Sciences, 1994.
Trouver le texte intégralAtsumu, Ohmura, et ETH Greenland Expedition (1st : 1990), dir. Energy and mass balance during the melt season at the equilibrium line altitude, Paakitsq, Greenland Ice Sheet (69⁰34'25.3" North, 49⁰17'44.1"West, 1175 M A.S.L.). Zurich : Dept. of Geography, ETH, 1991.
Trouver le texte intégralLurcock, Pontus, et Fabio Florindo. Antarctic Climate History and Global Climate Changes. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190676889.013.18.
Texte intégralLurcock, Pontus, et Fabio Florindo. Antarctic Climate History and Global Climate Changes. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190699420.013.18.
Texte intégralKhare, Neloy. Climate Variability of Southern High Latitude Regions : Sea, Ice, and Atmosphere Interactions. Taylor & Francis Group, 2022.
Trouver le texte intégralKhare, Neloy. Climate Variability of Southern High Latitude Regions : Sea, Ice, and Atmosphere Interactions. CRC Press LLC, 2022.
Trouver le texte intégralKhare, Neloy. Climate Variability of Southern High Latitude Regions : Sea, Ice, and Atmosphere Interactions. Taylor & Francis Group, 2022.
Trouver le texte intégralChapitres de livres sur le sujet "Ice sheet and climate interactions"
Broccoli, A. J., et S. Manabe. « Climate Model Studies of Interactions between Ice Sheets and the Atmosphere-Ocean System ». Dans Ice in the Climate System, 271–90. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_17.
Texte intégralLetréguilly, Anne, et Catherine Ritz. « Modelling of the Fennoscandian Ice Sheet ». Dans Ice in the Climate System, 21–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_2.
Texte intégralBudd, W. F., et P. Rayner. « Modelling Ice Sheet and Climate Changes through the Ice Ages ». Dans Ice in the Climate System, 291–319. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_18.
Texte intégralLemke, P. « Modelling Sea Ice - Mixed Layer Interaction ». Dans Modelling Oceanic Climate Interactions, 243–69. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84975-6_7.
Texte intégralWhillans, I. M., et C. J. van der Veen. « Controls on Changes in the West Antarctic Ice Sheet ». Dans Ice in the Climate System, 47–54. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_3.
Texte intégralPaterson, W. S. B. « World Sea Level and the Present Mass Balance of the Antarctic Ice Sheet ». Dans Ice in the Climate System, 131–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_8.
Texte intégralAndrews, J. T., K. Tedesco et A. E. Jennings. « Heinrich Events : Chronology and Processes, East-Central Laurentide Ice Sheet and NW Labrador Sea ». Dans Ice in the Climate System, 167–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_11.
Texte intégralvan Ypersele, J. P. « Sea-Ice Interactions in Polar Regions ». Dans Energy and Water Cycles in the Climate System, 295–322. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76957-3_12.
Texte intégralGrosswald, Mikhail G. « Extent and Melting History of the Late Weichselian Ice Sheet, the Barents-Kara Continental Margin ». Dans Ice in the Climate System, 1–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_1.
Texte intégralScherer, Reed P. « Quaternary interglacials and the West Antarctic Ice Sheet ». Dans Earth's Climate and Orbital Eccentricity : The Marine Isotope Stage 11 Question, 103–12. Washington, D. C. : American Geophysical Union, 2003. http://dx.doi.org/10.1029/137gm08.
Texte intégralActes de conférences sur le sujet "Ice sheet and climate interactions"
Piccione, Gavin, Terry Blackburn, Slawek Tulaczyk, Troy Rasbury, Paul Northrup et Brandon Cheney. « SUBGLACIAL PRECIPITATES RECORD EAST ANTARCTIC ICE SHEET RESPONSE TO PLEISTOCENE CLIMATE CYCLES ». Dans GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359728.
Texte intégralDaugherty, Matt. « Epidemiological significance of vector behavior : Interactions with plant resistance traits and climate ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.92953.
Texte intégralTarasov, Lev, Taimaz Bahadory et Marilena Sophie Geng. « THE RELATIONSHIP BETWEEN TERRESTRIAL ICE SHEET MARGINS AND MEAN SUMMER TEMPERATURE FROM FULLY COUPLED ICE AND CLIMATE MODELLING ». Dans GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358330.
Texte intégralColl, Moshe. « Climate changes and biological pest control : From tri-trophic interactions to geographical distribution ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93309.
Texte intégralDing, Jianqing. « Climate warming affects biological control by shifting interactions of invasive plants and insects ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.95034.
Texte intégralProthro, Lindsay O., Lauren M. Simkins, Wojciech Majewski et John B. Anderson. « SEDIMENTARY PROCESSES AT PALEO-GROUNDING LINES : GLACIAL AND OCEANOGRAPHIC INTERACTIONS DURING ICE-SHEET RETREAT ». Dans GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-301342.
Texte intégralGinsberg, Howard S. « Interactions of climate change with geology, infrastructure, and human demography : Implications for vectors and pathogens ». Dans 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94698.
Texte intégralHeggy, Essam. « Exploring Deserts Response to Climate Change from the Orbiting Arid Subsurface and Ice Sheet Sounder (OASIS) ». Dans IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9553810.
Texte intégralPowell, Evelyn, Robert P. Ackert, Christine Burrill, Matthew J. Zimmerer, Konstantin Latychev, Jerry X. Mitrovica et James Davis. « ANTARCTIC ICE SHEET AND SOLID EARTH INTERACTIONS : IMPLICATIONS FOR MANTLE VISCOSITY INFERENCES AND WEST ANTARCTIC VOLCANISM ». Dans GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-383552.
Texte intégralAhmed, Aziz, M. Abdullah Al Maruf, Arun Kr Dev et Mohammed Abdul Hannan. « Preliminary Analytical Formulation of Ice-Floater Interactions Including the Effect of Wave Load ». Dans ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78340.
Texte intégralRapports d'organisations sur le sujet "Ice sheet and climate interactions"
Cenedese, Claudia, et Mary-Louise Timmermans. 2017 program of studies : ice-ocean interactions. Woods Hole Oceanographic Institution, novembre 2018. http://dx.doi.org/10.1575/1912/27807.
Texte intégralJeffery, Nicole. Ice-ocean interactions, marine biogeochemistry and the climate system. Office of Scientific and Technical Information (OSTI), mai 2017. http://dx.doi.org/10.2172/1358151.
Texte intégralHeimbach, Patrick. Predicting Ice Sheet and Climate Evolution at Extreme Scales. Office of Scientific and Technical Information (OSTI), février 2016. http://dx.doi.org/10.2172/1237286.
Texte intégralGunzburger, Max, et Lili Ju. PISCEES : Predicting Ice Sheet and Climate Evolution at Extreme Scales. Office of Scientific and Technical Information (OSTI), décembre 2017. http://dx.doi.org/10.2172/1412072.
Texte intégralSacks, William, Brian Kauffman et Mariana Vertenstein. Predicting Ice Sheet and Climate Evolution on Extreme Scales (PISCEES) Final Report. Office of Scientific and Technical Information (OSTI), septembre 2018. http://dx.doi.org/10.2172/1468820.
Texte intégralSalinger, Andrew G., Irina Kalashnikova Tezaur, Mauro Perego, Raymond Tuminaro et Stephen Price. Rapid development of an ice sheet climate application using the components-based approach. Office of Scientific and Technical Information (OSTI), octobre 2015. http://dx.doi.org/10.2172/1222925.
Texte intégralJu, Lili, et Max Gunzburger. Final Technical Report -- PISCEES : Predicting Ice Sheet and Climate Evolution at Extreme Scales. Office of Scientific and Technical Information (OSTI), décembre 2017. http://dx.doi.org/10.2172/1411121.
Texte intégralAsay-Davis, Xylar. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM. Office of Scientific and Technical Information (OSTI), décembre 2015. http://dx.doi.org/10.2172/1233439.
Texte intégralKim, Grace, Stefanie Mack et Daniel Kaufman. Combining artificial intelligence, Earth observations, and climate models to improve predictability of ice-biogeochemistry interactions. Office of Scientific and Technical Information (OSTI), avril 2021. http://dx.doi.org/10.2172/1769689.
Texte intégralAsay-Davis, Xylar Storm. Final Report : Modeling coupled ice sheet-ocean interactions in the Model for Prediction Across Scales (MPAS) and in DOE Earth System Models. Office of Scientific and Technical Information (OSTI), janvier 2019. http://dx.doi.org/10.2172/1490084.
Texte intégral