Articles de revues sur le sujet « IFITM-2 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « IFITM-2 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Yu, Jingyou, and Shan-Lu Liu. "The Inhibition of HIV-1 Entry Imposed by Interferon Inducible Transmembrane Proteins Is Independent of Co-Receptor Usage." Viruses 10, no. 8 (2018): 413. http://dx.doi.org/10.3390/v10080413.
Texte intégralFranz, Sergej, Fabian Pott, Thomas Zillinger, et al. "Human IFITM3 restricts chikungunya virus and Mayaro virus infection and is susceptible to virus-mediated counteraction." Life Science Alliance 4, no. 7 (2021): e202000909. http://dx.doi.org/10.26508/lsa.202000909.
Texte intégralMinakshi, Rinki. "Interferon-Induced Transmembrane Protein: A Moonlighting Protein Against SARS-CoV-2 Infection or in Support of Invasive Ductal Breast Carcinoma?" Asian Pacific Journal of Cancer Care 5, S1 (2020): 241–42. http://dx.doi.org/10.31557/apjcc.2020.5.s1.241-242.
Texte intégralMak, Nelly S. C., Jingyan Liu, Dan Zhang, et al. "Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats." PLOS Pathogens 20, no. 12 (2024): e1012763. https://doi.org/10.1371/journal.ppat.1012763.
Texte intégralDimech, Christina, and Bhushan Nagar. "Towards a structural characterization of the IFIT antiviral complex." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C246. http://dx.doi.org/10.1107/s2053273314097538.
Texte intégralHickford, D., A. Pask, G. Shaw, and M. B. Renfree. "264. Primordial germ cell specification in a marsupial, the tammar wallaby." Reproduction, Fertility and Development 20, no. 9 (2008): 64. http://dx.doi.org/10.1071/srb08abs264.
Texte intégralConfort, Marie-Pierre, Maëva Duboeuf, Adrien Thiesson, et al. "IFITMs from Naturally Infected Animal Species Exhibit Distinct Restriction Capacities against Toscana and Rift Valley Fever Viruses." Viruses 15, no. 2 (2023): 306. http://dx.doi.org/10.3390/v15020306.
Texte intégralCampbell, Robert A., Jesse W. Rowley, Andrew S. Weyrich, and Matthew T. Rondina. "Surface Ifitms on Megakaryocytes and Platelets Regulate Fibrinogen Endocytosis Under Inflammatory Conditions." Blood 126, no. 23 (2015): 1034. http://dx.doi.org/10.1182/blood.v126.23.1034.1034.
Texte intégralDas, Tandrila, and Howard C. Hang. "Discovery and Characterization of IFITM S-Palmitoylation." Viruses 15, no. 12 (2023): 2329. http://dx.doi.org/10.3390/v15122329.
Texte intégralSmith, S. E., M. S. Gibson, R. S. Wash, et al. "Chicken Interferon-Inducible Transmembrane Protein 3 Restricts Influenza Viruses and LyssavirusesIn Vitro." Journal of Virology 87, no. 23 (2013): 12957–66. http://dx.doi.org/10.1128/jvi.01443-13.
Texte intégralMudhasani, R., J. P. Tran, C. Retterer, et al. "IFITM-2 and IFITM-3 but Not IFITM-1 Restrict Rift Valley Fever Virus." Journal of Virology 87, no. 15 (2013): 8451–64. http://dx.doi.org/10.1128/jvi.03382-12.
Texte intégralKordbacheh, Ramina, Madelyn Ashley, William D. Cutts, et al. "Common Chemical Plasticizer Di(2-Ethhylhexyl) Phthalate Exposure Exacerbates Coxsackievirus B3 Infection." Viruses 16, no. 12 (2024): 1821. http://dx.doi.org/10.3390/v16121821.
Texte intégralKumar, Parimal, Trevor R. Sweeney, Maxim A. Skabkin, Olga V. Skabkina, Christopher U. T. Hellen, and Tatyana V. Pestova. "Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ppp- mRNAs." Nucleic Acids Research 42, no. 5 (2013): 3228–45. http://dx.doi.org/10.1093/nar/gkt1321.
Texte intégralMakled, Amal F., Sahar A. M. Ali, S. S. Eldahdouh, et al. "Angiotensin-Converting Enzyme-2 (ACE-2) with Interferon-Induced Transmembrane Protein-3 (IFITM-3) Genetic Variants and Interleukin-6 as Severity and Risk Predictors among COVID-19 Egyptian Population." International Journal of Microbiology 2023 (December 21, 2023): 1–12. http://dx.doi.org/10.1155/2023/6384208.
Texte intégralWang, Jingjing, Yuhang Luo, Harshita Katiyar, Chen Liang, and Qian Liu. "The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies." Viruses 16, no. 5 (2024): 734. http://dx.doi.org/10.3390/v16050734.
Texte intégralFranco, Justin H., Saurabh Chattopadhyay, and Zhixing K. Pan. "How Different Pathologies Are Affected by IFIT Expression." Viruses 15, no. 2 (2023): 342. http://dx.doi.org/10.3390/v15020342.
Texte intégralCompton, Alex A., Tiansheng Li, Guoli Shi, et al. "The extracellular tail of IFITM3 promotes SARS-CoV-2 entry into cells and is diversifying in primates." Journal of Immunology 210, no. 1_Supplement (2023): 71.32. http://dx.doi.org/10.4049/jimmunol.210.supp.71.32.
Texte intégralPawar, Puja, Jyotsna Gokavi, Shilpa Wakhare, et al. "MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors." Viruses 15, no. 11 (2023): 2206. http://dx.doi.org/10.3390/v15112206.
Texte intégralSteyn, Angela, Sarah Keep, Erica Bickerton, and Mark Fife. "The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro." Genes 11, no. 8 (2020): 918. http://dx.doi.org/10.3390/genes11080918.
Texte intégralYánez, Diana C., Hemant Sahni, Susan Ross, et al. "IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation." European Journal of Immunology 49, no. 1 (2018): 66–78. http://dx.doi.org/10.1002/eji.201847692.
Texte intégralZhu, Zhengyu, Xiaoyun Yang, Chaoqun Huang, and Lin Liu. "The Interferon-Induced Protein with Tetratricopeptide Repeats Repress Influenza Virus Infection by Inhibiting Viral RNA Synthesis." Viruses 15, no. 7 (2023): 1412. http://dx.doi.org/10.3390/v15071412.
Texte intégralVishnubalaji, Radhakrishnan, Hibah Shaath, and Nehad M. Alajez. "Protein Coding and Long Noncoding RNA (lncRNA) Transcriptional Landscape in SARS-CoV-2 Infected Bronchial Epithelial Cells Highlight a Role for Interferon and Inflammatory Response." Genes 11, no. 7 (2020): 760. http://dx.doi.org/10.3390/genes11070760.
Texte intégralShaath, Hibah, Radhakrishnan Vishnubalaji, Eyad Elkord, and Nehad M. Alajez. "Single-Cell Transcriptome Analysis Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe COVID-19." Cells 9, no. 11 (2020): 2374. http://dx.doi.org/10.3390/cells9112374.
Texte intégralShaath, Hibah, Radhakrishnan Vishnubalaji, Eyad Elkord, and Nehad M. Alajez. "Single-Cell Transcriptome Analysis Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe COVID-19." Cells 9, no. 11 (2020): 2374. https://doi.org/10.5281/zenodo.13533357.
Texte intégralShaath, Hibah, Radhakrishnan Vishnubalaji, Eyad Elkord, and Nehad M. Alajez. "Single-Cell Transcriptome Analysis Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis of Severe COVID-19." Cells 9, no. 11 (2020): 2374. https://doi.org/10.5281/zenodo.13533357.
Texte intégralČiučiulkaitė, Ieva, Winfried Siffert, Carina Elsner, et al. "Influence of the Single Nucleotide Polymorphisms rs12252 and rs34481144 in IFITM3 on the Antibody Response after Vaccination against COVID-19." Vaccines 11, no. 7 (2023): 1257. http://dx.doi.org/10.3390/vaccines11071257.
Texte intégralSkov, Vibe, Caroline Riley, Mads Thomassen, et al. "The Impact of Interferon on Interferon-Related Genes in Polycythemia Vera and Allied Neoplasms." Blood 132, Supplement 1 (2018): 4328. http://dx.doi.org/10.1182/blood-2018-99-110602.
Texte intégralRusso, Max, Sara T. Humes, Ariana M. Figueroa, et al. "Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression." Toxicological Sciences 182, no. 2 (2021): 260–74. http://dx.doi.org/10.1093/toxsci/kfab064.
Texte intégralZhang, Jiao, Si-yu Shao, Li-zu Li, Di Liu, and Xiu-qin Yang. "Molecular cloning and characterization of porcine interferon-induced protein with tetratricopeptide repeats (IFIT) 5." Canadian Journal of Animal Science 95, no. 4 (2015): 551–56. http://dx.doi.org/10.4141/cjas-2015-009.
Texte intégralSun, Fang, Zhiqiang Xia, Yuewen Han, et al. "Topology, Antiviral Functional Residues and Mechanism of IFITM1." Viruses 12, no. 3 (2020): 295. http://dx.doi.org/10.3390/v12030295.
Texte intégralKummer, Susann, Ori Avinoam, and Hans-Georg Kräusslich. "IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells." Viruses 11, no. 6 (2019): 548. http://dx.doi.org/10.3390/v11060548.
Texte intégralCarr, Sarah N., Benjamin R. Crites, Harshraj Shinde, and Phillip J. Bridges. "Transcriptomic Changes in Response to Form of Selenium on the Interferon-Tau Signaling Mechanism in the Caruncular Tissue of Beef Heifers at Maternal Recognition of Pregnancy." International Journal of Molecular Sciences 24, no. 24 (2023): 17327. http://dx.doi.org/10.3390/ijms242417327.
Texte intégralWang, Lei, Meng Shen, Jiale Liu, et al. "Effects of Dietary l-Glutamine Supplementation on the Intestinal Function and Muscle Growth of Piglets." Life 14, no. 3 (2024): 405. http://dx.doi.org/10.3390/life14030405.
Texte intégralTirumurugaan, Krishnaswamy, Rahul Pawar, Gopal Dhinakar Raj, Arthanari Thangavelu, John Hammond, and Satya Parida. "RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle." Viruses 12, no. 4 (2020): 463. http://dx.doi.org/10.3390/v12040463.
Texte intégralPasquero, Selina, Francesca Gugliesi, Matteo Biolatti, et al. "Citrullination profile analysis reveals peptidylarginine deaminase 3 as an HSV-1 target to dampen the activity of candidate antiviral restriction factors." PLOS Pathogens 19, no. 12 (2023): e1011849. http://dx.doi.org/10.1371/journal.ppat.1011849.
Texte intégralDinwiddie, Darrell, Walter Dehority, Kurt C. Schwalm, Raymond J. Langley, Stephen A. Young, and Joshua L. Kennedy. "2249." Journal of Clinical and Translational Science 1, S1 (2017): 59. http://dx.doi.org/10.1017/cts.2017.213.
Texte intégralGuo, Y., N. Jahmat, T. Van Shaik, et al. "124 CHANGES IN GENE EXPRESSION FOLLOWING EXPOSURE OF BOVINE ENDOMETRIAL EPITHELIAL CELLS (bEEC) TO ESCHERICHIA COLI LPS; THEIR POSSIBLE EFFECT ON IMPLANTATION." Reproduction, Fertility and Development 29, no. 1 (2017): 170. http://dx.doi.org/10.1071/rdv29n1ab124.
Texte intégralLow, Zhao Xuan, Osamu Kanauchi, Vunjia Tiong та ін. "The Antiviral Effects of Heat-Killed Lactococcus lactis Strain Plasma Against Dengue, Chikungunya, and Zika Viruses in Humans by Upregulating the IFN-α Signaling Pathway". Microorganisms 12, № 11 (2024): 2304. http://dx.doi.org/10.3390/microorganisms12112304.
Texte intégralMorodomi, Yosuke, Roberto Aiolfi, Eric Won, et al. "Sca-1 As a Marker of Stress-Induced Thrombopoiesis in Mice." Blood 134, Supplement_1 (2019): 1068. http://dx.doi.org/10.1182/blood-2019-127446.
Texte intégralFricke, Thomas, Sarah Schlagowski, Shanchuan Liu, et al. "Comparison of a Genotype 1 and a Genotype 2 Macaque Foamy Virus env Gene Indicates Distinct Infectivity and Cell-Cell Fusion but Similar Tropism and Restriction of Cell Entry by Interferon-Induced Transmembrane Proteins." Viruses 15, no. 2 (2023): 262. http://dx.doi.org/10.3390/v15020262.
Texte intégralZheng, Mei, Xuesen Zhao, Shuangli Zheng, et al. "Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction via TMPRSS2 activation of membrane fusion." Emerging Microbes & Infections 9, no. 1 (2020): 1567–79. https://doi.org/10.5281/zenodo.13531742.
Texte intégralZheng, Mei, Xuesen Zhao, Shuangli Zheng, et al. "Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction via TMPRSS2 activation of membrane fusion." Emerging Microbes & Infections 9, no. 1 (2020): 1567–79. https://doi.org/10.5281/zenodo.13531742.
Texte intégralLopez-Dominguez, R., J. Villatoro-Garcia, C. Marañón, et al. "OP0050 INCREASED IFITM GENE-SIGNATURES IN AGE-ASSOCIATED B AND PLASMA CELLS DEFINE NON-RESPONSE TO MYCOPHENOLATE MOFETIL IN SYSTEMIC LUPUS ERYTHEMATOSUS." Annals of the Rheumatic Diseases 82, Suppl 1 (2023): 32.2–33. http://dx.doi.org/10.1136/annrheumdis-2023-eular.4609.
Texte intégralCarr, Sarah, Benjamin Crites, and Phillip Bridges. "11 Transcriptomic changes in response to form of selenium on the interferon-tau signaling mechanism in the caruncular tissue of beef heifers at maternal recognition of pregnancy." Journal of Animal Science 102, Supplement_1 (2024): 53–54. http://dx.doi.org/10.1093/jas/skae019.064.
Texte intégralPrasad, Kartikay, Fatima Khatoon, Summya Rashid, et al. "Targeting hub genes and pathways of innate immune response in COVID-19: A network biology perspective." International Journal of Biological Macromolecules 163 (June 7, 2020): 1–8. https://doi.org/10.5281/zenodo.14822512.
Texte intégralZhen, Jing, Zhe Song, WenJie Su, Qing-Cui Zeng, JiaCen Li, and Qin Sun. "Integrated analysis of RNA-binding proteins in thyroid cancer." PLOS ONE 16, no. 3 (2021): e0247836. http://dx.doi.org/10.1371/journal.pone.0247836.
Texte intégralAssou, Said, Engi Ahmed, Lisa Morichon, et al. "The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2." International Journal of Molecular Sciences 24, no. 15 (2023): 12017. http://dx.doi.org/10.3390/ijms241512017.
Texte intégralDey, Aonkon, Rupa Narayan, Neal Smith, et al. "Single-Cell Multiomics Analysis Reveals Potential Drivers of Response to the Anti-TIM3 Inhibitor Sabatolimab Combined with Azacitidine in MDS and CMML." Blood 142, Supplement 1 (2023): 4319. http://dx.doi.org/10.1182/blood-2023-189858.
Texte intégralPatel, Parasvi S., Jun Tian, Ferran Fece de la Cruz, et al. "Abstract LB366: KRASG12C inhibition enhances immunogenicity in KRASG12C-mutant colorectal cancer." Cancer Research 84, no. 7_Supplement (2024): LB366. http://dx.doi.org/10.1158/1538-7445.am2024-lb366.
Texte intégralYount, Jacob S., Ashley Zani, and Adam D. Kenney. "Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice." Journal of Immunology 208, no. 1_Supplement (2022): 51.17. http://dx.doi.org/10.4049/jimmunol.208.supp.51.17.
Texte intégral