Articles de revues sur le sujet « III-V nanostructure »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « III-V nanostructure ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Florini, Nikoletta, George P. Dimitrakopulos, Joseph Kioseoglou, Nikos T. Pelekanos, and Thomas Kehagias. "Strain field determination in III–V heteroepitaxy coupling finite elements with experimental and theoretical techniques at the nanoscale." Journal of the Mechanical Behavior of Materials 26, no. 1-2 (2017): 1–8. http://dx.doi.org/10.1515/jmbm-2017-0009.
Texte intégralPantle, Florian, Monika Karlinger, Simon Wörle, et al. "Crystal side facet-tuning of GaN nanowires and nanofins grown by molecular beam epitaxy." Journal of Applied Physics 132, no. 18 (2022): 184304. http://dx.doi.org/10.1063/5.0098016.
Texte intégralBabicheva, Viktoriia E. "Transition Metal Dichalcogenide Nanoantennas Lattice." MRS Advances 4, no. 41-42 (2019): 2283–88. http://dx.doi.org/10.1557/adv.2019.357.
Texte intégralIshikawa, Tomonori, Shigeru Kohmoto, Tetsuya Nishimura, and Kiyoshi Asakawa. "In situ electron-beam processing for III–V semiconductor nanostructure fabrication." Thin Solid Films 373, no. 1-2 (2000): 170–75. http://dx.doi.org/10.1016/s0040-6090(00)01128-7.
Texte intégralMagno, R., and B. R. Bennett. "Nanostructure patterns written in III–V semiconductors by an atomic force microscope." Applied Physics Letters 70, no. 14 (1997): 1855–57. http://dx.doi.org/10.1063/1.118712.
Texte intégralZhang, Jiarui, and Chi Ma. "Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors." Nanomaterials 15, no. 11 (2025): 816. https://doi.org/10.3390/nano15110816.
Texte intégralKang, M., J. H. Wu, S. Huang, et al. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces." Applied Physics Letters 101, no. 8 (2012): 082101. http://dx.doi.org/10.1063/1.4742863.
Texte intégralBoroditsky, M., I. Gontijo, M. Jackson, et al. "Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes." Journal of Applied Physics 87, no. 7 (2000): 3497–504. http://dx.doi.org/10.1063/1.372372.
Texte intégralAbd-Elkader, Omar H., Abdullah M. Al-Enizi, Shoyebmohamad F. Shaikh, Mohd Ubaidullah, Mohamed O. Abdelkader, and Nasser Y. Mostafa. "Enhancing the Liquefied Petroleum Gas Sensing Sensitivity of Mn-Ferrite with Vanadium Doping." Processes 10, no. 10 (2022): 2012. http://dx.doi.org/10.3390/pr10102012.
Texte intégralYuan, Xiaoming, Dong Pan, Yijin Zhou, et al. "Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions." Applied Physics Reviews 8, no. 2 (2021): 021302. http://dx.doi.org/10.1063/5.0044706.
Texte intégralCui, Jie, Masashi Ozeki, and Masafumi Ohashi. "Dynamic behavior of group III and V organometallic sources and nanostructure fabrication by supersonic molecular beams." Journal of Crystal Growth 209, no. 2-3 (2000): 492–98. http://dx.doi.org/10.1016/s0022-0248(99)00604-1.
Texte intégralTorres-Jaramillo, Santiago, Camilo Pulzara-Mora, Roberto Bernal-Correa, et al. "Structural and optical study of alternating layers of In and GaAs prepared by magnetron sputtering." Universitas Scientiarum 24, no. 3 (2019): 523–42. http://dx.doi.org/10.11144/javeriana.sc24-3.saos.
Texte intégralFloris, Francesco, Lucia Fornasari, Vittorio Bellani, et al. "Strong Modulations of Optical Reflectance in Tapered Core–Shell Nanowires." Materials 12, no. 21 (2019): 3572. http://dx.doi.org/10.3390/ma12213572.
Texte intégralWang, Lifeng, Juha Song, Christine Ortiz, and Mary C. Boyce. "Anisotropic design of a multilayered biological exoskeleton." Journal of Materials Research 24, no. 12 (2009): 3477–94. http://dx.doi.org/10.1557/jmr.2009.0443.
Texte intégralAVİNÇ AKPINAR, İclal. "Effect of chemical oxidation process on adhesive performance in two component adhesive with nano particle and nano fiber additives." European Mechanical Science 8, no. 1 (2024): 29–37. http://dx.doi.org/10.26701/ems.1385552.
Texte intégralGupta, Kaushik, Tina Basu, and Uday Chand Ghosh. "Sorption Characteristics of Arsenic(V) for Removal from Water Using Agglomerated Nanostructure Iron(III)−Zirconium(IV) Bimetal Mixed Oxide." Journal of Chemical & Engineering Data 54, no. 8 (2009): 2222–28. http://dx.doi.org/10.1021/je900282m.
Texte intégralMaliakkal, Carina B., Daniel Jacobsson, Marcus Tornberg, and Kimberly A. Dick. "Post-nucleation evolution of the liquid–solid interface in nanowire growth." Nanotechnology 33, no. 10 (2021): 105607. http://dx.doi.org/10.1088/1361-6528/ac3e8d.
Texte intégralKurowski, Ludovic, Dorothée Bernard, Eugène Constant, and Didier Decoster. "Electron-beam-induced reactivation of Si dopants in hydrogenated two-dimensional AlGaAs heterostructures: a possible new route for III–V nanostructure fabrication." Journal of Physics: Condensed Matter 16, no. 2 (2003): S127—S132. http://dx.doi.org/10.1088/0953-8984/16/2/015.
Texte intégralMukherjee, K., C. De Santi, S. You, et al. "Study and characterization of GaN MOS capacitors: Planar vs trench topographies." Applied Physics Letters 120, no. 14 (2022): 143501. http://dx.doi.org/10.1063/5.0087245.
Texte intégralHuang, Y. Q., V. Polojärvi, S. Hiura, et al. "(Invited) Quest for Fully Spin and Optically Polarized Semiconductor Nanostructures for Room-Temperature Opto-Spintronics." ECS Meeting Abstracts MA2023-02, no. 34 (2023): 1666. http://dx.doi.org/10.1149/ma2023-02341666mtgabs.
Texte intégralTan, Hoe. "(Invited) Shape Engineering of Nanostructured III-V Semiconductor Lasers." ECS Meeting Abstracts MA2024-01, no. 22 (2024): 1329. http://dx.doi.org/10.1149/ma2024-01221329mtgabs.
Texte intégralDubrovskii V. G. and Leshchenko E. D. "Criterion for the growth selectivity of III-V and III-N nanowires on masked substrates." Technical Physics Letters 48, no. 11 (2022): 45. http://dx.doi.org/10.21883/tpl.2022.11.54889.19350.
Texte intégralДубровский, В. Г., та Е. Д. Лещенко. "Критерий селективного роста III-V и III-N нитевидных нанокристаллов на маскированных подложках". Письма в журнал технической физики 48, № 22 (2022): 7. http://dx.doi.org/10.21883/pjtf.2022.22.53798.19350.
Texte intégralDubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors." Technical Physics Letters 49, no. 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.
Texte intégralReznik, R. R., K. P. Kotlyar, A. I. Khrebtov, and G. E. Cirlin. "Features of the MBE growth of nanowires with quantum dots on the silicon surface." Journal of Physics: Conference Series 2086, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1742-6596/2086/1/012032.
Texte intégralДубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V". Письма в журнал технической физики 49, № 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.
Texte intégralReznik, R. R., K. P. Kotlyar, V. O. Gridchin, et al. "III-V nanostructures with different dimensionality on silicon." Journal of Physics: Conference Series 2103, no. 1 (2021): 012121. http://dx.doi.org/10.1088/1742-6596/2103/1/012121.
Texte intégralMynbaev, K. D., A. V. Shilyaev, A. A. Semakova, E. V. Bykhanova, and N. L. Bazhenov. "Luminescence of II–VI and III–V nanostructures." Opto-Electronics Review 25, no. 3 (2017): 209–14. http://dx.doi.org/10.1016/j.opelre.2017.06.005.
Texte intégralTakei, Kuniharu, Rehan Kapadia, Yongjun Li, E. Plis, Sanjay Krishna, and Ali Javey. "Surface Charge Transfer Doping of III–V Nanostructures." Journal of Physical Chemistry C 117, no. 34 (2013): 17845–49. http://dx.doi.org/10.1021/jp406174r.
Texte intégralAlonso-González, P., L. González, D. Fuster, J. Martín-Sánchez, and Yolanda González. "Surface Localization of Buried III–V Semiconductor Nanostructures." Nanoscale Research Letters 4, no. 8 (2009): 873–77. http://dx.doi.org/10.1007/s11671-009-9329-3.
Texte intégralCoelho, J., G. Patriarche, F. Glas, G. Saint-Girons, and I. Sagnes. "Stress-driven self-ordering of III–V nanostructures." Journal of Crystal Growth 275, no. 1-2 (2005): e2245-e2249. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.359.
Texte intégralJohn Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Texte intégralKOUJI, Kensuke, YouKey MATSUNAGA, and Kyozaburo TAKEDA. "Electronic and Molecular Structures of III-V Hetero-Nanostructures." Journal of Computer Chemistry, Japan 16, no. 5 (2017): 149–51. http://dx.doi.org/10.2477/jccj.2017-0060.
Texte intégralCipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.
Texte intégralReinhardt, F., B. Dwir, G. Biasiol, and E. Kapon. "Atomic force microscopy of III–V nanostructures in air." Applied Surface Science 104-105 (September 1996): 529–38. http://dx.doi.org/10.1016/s0169-4332(96)00198-5.
Texte intégralAlvarado, S. F. "Luminescence in scanning tunneling microscopy on III–V nanostructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9, no. 2 (1991): 409. http://dx.doi.org/10.1116/1.585582.
Texte intégralMONAICO, Eduard V. "MICRO- AND NANO-ENGINEERING OF SEMICONDUCTOR COMPOUNDS AND METAL STRUCTURES BASED ON ELECTROCHEMICAL TECHNOLOGIES." Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 9, no. 1 (2024): 85–107. http://dx.doi.org/10.56082/annalsarsciphyschem.2024.1.85.
Texte intégralZhang, Leilei, Xing Li, Shaobo Cheng, and Chongxin Shan. "Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures." Materials 15, no. 5 (2022): 1917. http://dx.doi.org/10.3390/ma15051917.
Texte intégralVladimirova, E. V., O. I. Gyrdasova, and A. V. Dmitriev. "Synthesis of nanostructured hollow microspheres of vanadium (III, V) oxides." Nanosystems: Physics, Chemistry, Mathematics 11, no. 5 (2020): 572–77. http://dx.doi.org/10.17586/2220-8054-2020-11-5-572-577.
Texte intégralFleischer, K., G. Bussetti, C. Goletti, W. Richter, and P. Chiaradia. "Optical anisotropy of Cs nanostructures on III–V(110) surfaces." Journal of Physics: Condensed Matter 16, no. 39 (2004): S4353—S4365. http://dx.doi.org/10.1088/0953-8984/16/39/010.
Texte intégralJenichen, B. "X-ray investigations of III–V compounds: layers, nanostructures, surfaces." Materials Science and Engineering: B 80, no. 1-3 (2001): 81–86. http://dx.doi.org/10.1016/s0921-5107(00)00594-8.
Texte intégralPatsha, Avinash, Kishore K. Madapu, and S. Dhara. "Raman Spectral Mapping of III–V Nitride and Graphene Nanostructures." MAPAN 28, no. 4 (2013): 279–83. http://dx.doi.org/10.1007/s12647-013-0082-9.
Texte intégralCoelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Stress-engineered orderings of self-assembled III-V semiconductor nanostructures." physica status solidi (c) 2, no. 4 (2005): 1245–50. http://dx.doi.org/10.1002/pssc.200460413.
Texte intégralTan, Chee Leong, and Hooman Mohseni. "Emerging technologies for high performance infrared detectors." Nanophotonics 7, no. 1 (2018): 169–97. http://dx.doi.org/10.1515/nanoph-2017-0061.
Texte intégralReznik R. R., Gridchin V. O., Kotlyar K. P., et al. "Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy." Semiconductors 56, no. 7 (2022): 492. http://dx.doi.org/10.21883/sc.2022.07.54653.16.
Texte intégralZiembicki, Jakub, Paweł Scharoch, Maciej P. Polak, Michał Wiśniewski, and Robert Kudrawiec. "Band parameters of group III–V semiconductors in wurtzite structure." Journal of Applied Physics 132, no. 22 (2022): 225701. http://dx.doi.org/10.1063/5.0132109.
Texte intégralSanchez, A. M., A. M. Beltran, R. Beanland, et al. "Blocking of indium incorporation by antimony in III–V-Sb nanostructures." Nanotechnology 21, no. 14 (2010): 145606. http://dx.doi.org/10.1088/0957-4484/21/14/145606.
Texte intégralSilveira, J. P., J. M. Garcia, and F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures." Journal of Crystal Growth 227-228 (July 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.
Texte intégralBenyoucef, M., M. Usman, T. Alzoubi, and J. P. Reithmaier. "Pre-patterned silicon substrates for the growth of III-V nanostructures." physica status solidi (a) 209, no. 12 (2012): 2402–10. http://dx.doi.org/10.1002/pssa.201228367.
Texte intégralSmirnov, Aliaksandr, Andrei Stsiapanau, Kirill Korsak, et al. "3‐2: Invited Paper: Monolithic integration of a superhigh resolution LED matrix with a Si addressing chip." SID Symposium Digest of Technical Papers 56, S1 (2025): 27–29. https://doi.org/10.1002/sdtp.18713.
Texte intégral