Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Image Correlation Spectroscopy.

Articles de revues sur le sujet « Image Correlation Spectroscopy »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Image Correlation Spectroscopy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nohe, A., and N. O. Petersen. "Image Correlation Spectroscopy." Science's STKE 2007, no. 417 (2007): pl7. http://dx.doi.org/10.1126/stke.4172007pl7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wiseman, P. W., J. A. Squier, M. H. Ellisman, and K. R. Wilson. "Two-photon image correlation spectroscopy and image cross-correlation spectroscopy." Journal of Microscopy 200, no. 1 (2000): 14–25. http://dx.doi.org/10.1046/j.1365-2818.2000.00736.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Digman, Michelle A., and Enrico Gratton. "Scanning image correlation spectroscopy." BioEssays 34, no. 5 (2012): 377–85. http://dx.doi.org/10.1002/bies.201100118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Clayton, Andrew H. A. "Phase-Sensitive Fluorescence Image Correlation Spectroscopy." International Journal of Molecular Sciences 25, no. 20 (2024): 11165. http://dx.doi.org/10.3390/ijms252011165.

Texte intégral
Résumé :
Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal function that is sensitive to the lifetime of the fluorescent species. In this paper, the theory of phase-sensitive fluorescence image correlation spectroscopy is described. In this version of lifetime imaging, image correlation spectroscopy analysis (i.e., spatial auto
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kurniawan, Nicholas A., and Raj Rajagopalan. "Probe-Independent Image Correlation Spectroscopy." Langmuir 27, no. 6 (2011): 2775–82. http://dx.doi.org/10.1021/la104478x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hendrix, Jelle, Tomas Dekens, and Don C. Lamb. "Arbitrary-Region Image Correlation Spectroscopy." Biophysical Journal 110, no. 3 (2016): 176a. http://dx.doi.org/10.1016/j.bpj.2015.11.983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wiseman, Paul W. "Image Correlation Spectroscopy: Principles and Applications." Cold Spring Harbor Protocols 2015, no. 4 (2015): pdb.top086124. http://dx.doi.org/10.1101/pdb.top086124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hendrix, Jelle, Tomas Dekens, Waldemar Schrimpf, and Don C. Lamb. "Arbitrary-Region Raster Image Correlation Spectroscopy." Biophysical Journal 111, no. 8 (2016): 1785–96. http://dx.doi.org/10.1016/j.bpj.2016.09.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Semrau, Stefan, Laurent Holtzer, Marcos Gonzalez-Gaitan, and Thomas Schmidt. "Particle Image Cross Correlation Spectroscopy (PICCS)." Biophysical Journal 98, no. 3 (2010): 182a. http://dx.doi.org/10.1016/j.bpj.2009.12.976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Longfils, Marco, Nick Smisdom, Marcel Ameloot, et al. "Raster Image Correlation Spectroscopy Performance Evaluation." Biophysical Journal 117, no. 10 (2019): 1900–1914. http://dx.doi.org/10.1016/j.bpj.2019.09.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Rossow, Molly J., Jennifer M. Sasaki, Michelle A. Digman, and Enrico Gratton. "Raster image correlation spectroscopy in live cells." Nature Protocols 5, no. 11 (2010): 1761–74. http://dx.doi.org/10.1038/nprot.2010.122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Wiseman, Paul. "Introduction to Fluorescence and Image Correlation Spectroscopy." Microscopy and Microanalysis 10, S02 (2004): 246–47. http://dx.doi.org/10.1017/s1431927604886483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Spendier, Kathrin, and James L. Thomas. "Image correlation spectroscopy of randomly distributed disks." Journal of Biological Physics 37, no. 4 (2011): 477–92. http://dx.doi.org/10.1007/s10867-011-9232-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Raub, Christopher B., Jay Unruh, Vinod Suresh, et al. "Image Correlation Spectroscopy of Multiphoton Images Correlates with Collagen Mechanical Properties." Biophysical Journal 94, no. 6 (2008): 2361–73. http://dx.doi.org/10.1529/biophysj.107.120006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Srivastava, M., N. O. Petersen, G. R. Mount, D. M. Kingston, and N. S. McIntyre. "Analysis of three-dimensional SIMS images using image cross-correlation spectroscopy." Surface and Interface Analysis 26, no. 3 (1998): 188–94. http://dx.doi.org/10.1002/(sici)1096-9918(199803)26:3<188::aid-sia359>3.0.co;2-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kang, Kyongok. "Mesoscopic relaxation time of dynamic image correlation spectroscopy." Journal of Biomedical Science and Engineering 03, no. 06 (2010): 625–32. http://dx.doi.org/10.4236/jbise.2010.36085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Costantino, Santiago, Jonathan W. D. Comeau, David L. Kolin, and Paul W. Wiseman. "Accuracy and Dynamic Range of Spatial Image Correlation and Cross-Correlation Spectroscopy." Biophysical Journal 89, no. 2 (2005): 1251–60. http://dx.doi.org/10.1529/biophysj.104.057364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Prummer, Michael, Sannah Zoffmann, Vanessa Klug, and Dorothee Kling. "A Cell Motility Assay Based on Image Correlation Spectroscopy." Biophysical Journal 102, no. 3 (2012): 191a—192a. http://dx.doi.org/10.1016/j.bpj.2011.11.1046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Nohe, Anja, Eleonora Keating, Crystal Loh, Michael T. Underhill, and Nils O. Petersen. "Caveolin-1 isoform reorganization studied by image correlation spectroscopy." Faraday Discussions 126 (2004): 185. http://dx.doi.org/10.1039/b304943d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Prummer, Michael, Dorothee Kling, Vanessa Trefzer, Thilo Enderle, Sannah Zoffmann, and Marco Prunotto. "A Random Motility Assay Based on Image Correlation Spectroscopy." Biophysical Journal 104, no. 11 (2013): 2362–72. http://dx.doi.org/10.1016/j.bpj.2013.04.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Civita, Simone, Ranieri Bizzarri, Paolo Bianchini, and Alberto Diaspro. "Image correlation spectroscopy approaches to probe diffusion in cell." Biophysical Journal 122, no. 3 (2023): 274a. http://dx.doi.org/10.1016/j.bpj.2022.11.1563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tanner, Kandice, Donald Ferris, Luca Lanzano, et al. "Image Correlation Spectroscopy Reveals Global Dynamics of Wound Healing." Biophysical Journal 96, no. 3 (2009): 42a. http://dx.doi.org/10.1016/j.bpj.2008.12.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Nieves, D. J., Y. Li, D. G. Fernig, and R. Lévy. "Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells." Royal Society Open Science 2, no. 6 (2015): 140454. http://dx.doi.org/10.1098/rsos.140454.

Texte intégral
Résumé :
Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short eno
Styles APA, Harvard, Vancouver, ISO, etc.
24

Brewer, Jonathan, Maria Bloksgaard, Jakub Kubiak, and Luis Bagatolli. "Fluorescent Correlation Spectroscopy and Raster Image Correlation Spectroscopy as a Tool to Measure Diffusion in the Human Epidermis." Biophysical Journal 100, no. 3 (2011): 630a. http://dx.doi.org/10.1016/j.bpj.2010.12.3623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chushkin, Y., C. Caronna, and A. Madsen. "A novel event correlation scheme for X-ray photon correlation spectroscopy." Journal of Applied Crystallography 45, no. 4 (2012): 807–13. http://dx.doi.org/10.1107/s0021889812023321.

Texte intégral
Résumé :
X-ray photon correlation spectroscopy (XPCS) was employed to measure the time-dependent intermediate scattering function in an organic molecular glass former. Slow translational dynamics were probed in the glassy state and the correlation functions were calculated from two-dimensional speckle patterns recorded by a CCD detector. The image frames were analysed using a droplet algorithm together with an event correlation scheme. This method provides results analogous to standard intensity correlation algorithms but is much faster, hence addressing the recurrent problem of insufficient computing
Styles APA, Harvard, Vancouver, ISO, etc.
26

Benn, A. G., and R. J. Kulperger. "Integrated marked Poisson processes with application to image correlation spectroscopy." Canadian Journal of Statistics 25, no. 2 (1997): 215–31. http://dx.doi.org/10.2307/3315733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kolin, David L., Santiago Costantino, and Paul W. Wiseman. "Sampling Effects, Noise, and Photobleaching in Temporal Image Correlation Spectroscopy." Biophysical Journal 90, no. 2 (2006): 628–39. http://dx.doi.org/10.1529/biophysj.105.072322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kitamura, Akira, Hiroki Shimizu, and Masataka Kinjo. "Determination of cytoplasmic optineurin foci sizes using image correlation spectroscopy." Journal of Biochemistry 164, no. 3 (2018): 223–29. http://dx.doi.org/10.1093/jb/mvy044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

DE METS, R., A. DELON, M. BALLAND, O. DESTAING, and I. WANG. "Dynamic range and background filtering in raster image correlation spectroscopy." Journal of Microscopy 279, no. 2 (2020): 123–38. http://dx.doi.org/10.1111/jmi.12925.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Rowland, David J., Hannah H. Tuson, and Julie S. Biteen. "Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy." Biophysical Journal 110, no. 10 (2016): 2241–51. http://dx.doi.org/10.1016/j.bpj.2016.04.023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ciccotosto, Giuseppe D., Noga Kozer, Timothy T. Y. Chow, James W. M. Chon, and Andrew H. A. Clayton. "Aggregation Distributions on Cells Determined by Photobleaching Image Correlation Spectroscopy." Biophysical Journal 104, no. 5 (2013): 1056–64. http://dx.doi.org/10.1016/j.bpj.2013.01.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Robertson, Claire. "Theory and practical recommendations for autocorrelation-based image correlation spectroscopy." Journal of Biomedical Optics 17, no. 8 (2012): 080801. http://dx.doi.org/10.1117/1.jbo.17.8.080801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Liu, Fulong, Gang Li, Shuqiang Yang, Wenjuan Yan, Guoquan He, and Ling Lin. "Recognition of Heterogeneous Edges in Multiwavelength Transmission Images Based on the Weighted Constraint Decision Method." Applied Spectroscopy 74, no. 8 (2020): 883–93. http://dx.doi.org/10.1177/0003702820908951.

Texte intégral
Résumé :
Multiwavelength light transmission imaging provides a possibility for early detection of breast cancer. However, due to strong scattering during the transmission process of breast tissue analysis, the transmitted image signal is weak and the image is blurred and this makes heterogeneous edge detection difficult. This paper proposes a method based on the weighted constraint decision (WCD) method to eliminate the erosion and checkerboard effects in image histogram equalization (HE) enhancement and to improve the recognition of heterogeneous edge. Multiwavelength transmission images of phantom ar
Styles APA, Harvard, Vancouver, ISO, etc.
34

Rossow, Molly, William W. Mantulin, and Enrico Gratton. "Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels." Journal of Biomedical Optics 14, no. 2 (2009): 024014. http://dx.doi.org/10.1117/1.3088203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Gröner, Nadine, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth. "Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy." Optics Express 18, no. 20 (2010): 21225. http://dx.doi.org/10.1364/oe.18.021225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kurniawan, Nicholas Agung, Chwee Teck Lim, and Raj Rajagopalan. "Image correlation spectroscopy as a tool for microrheology of soft materials." Soft Matter 6, no. 15 (2010): 3499. http://dx.doi.org/10.1039/c002265a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Semrau, Stefan, Piet Lommerse, Margot Beukers, and Thomas Schmidt. "Adenosine A1 Receptor Signaling Unraveled By Particle Image Correlation Spectroscopy (PICS)." Biophysical Journal 96, no. 3 (2009): 368a. http://dx.doi.org/10.1016/j.bpj.2008.12.1983.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Semrau, Stefan, Laurent Holtzer, Marcos González-Gaitán, and Thomas Schmidt. "Quantification of Biological Interactions with Particle Image Cross-Correlation Spectroscopy (PICCS)." Biophysical Journal 100, no. 7 (2011): 1810–18. http://dx.doi.org/10.1016/j.bpj.2010.12.3746.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wiseman, Paul W. "Advances in Image Correlation Spectroscopy for Measurements in Heterogeneous Cell Environments." Biophysical Journal 102, no. 3 (2012): 6a. http://dx.doi.org/10.1016/j.bpj.2011.11.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Kulkarni, R. P., D. D. Wu, M. E. Davis, and S. E. Fraser. "Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy." Proceedings of the National Academy of Sciences 102, no. 21 (2005): 7523–28. http://dx.doi.org/10.1073/pnas.0501950102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

IMMERSTRAND, CHARLOTTE, JOEL HEDLUND, KARL–ERIC MAGNUSSON, TOMMY SUNDQVIST, and KAJSA HOLMGREN PETERSON. "Organelle transport in melanophores analyzed by white light image correlation spectroscopy." Journal of Microscopy 225, no. 3 (2007): 275–82. http://dx.doi.org/10.1111/j.1365-2818.2007.01743.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Rocheleau, Jonathan V., and Nils O. Petersen. "The Sendai virus membrane fusion mechanism studied using image correlation spectroscopy." European Journal of Biochemistry 268, no. 10 (2001): 2924–30. http://dx.doi.org/10.1046/j.1432-1327.2001.02181.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Danaf, Nader. "Image Correlation Spectroscopy based Assay to Investigate G-Protein Coupled Receptors." Biophysical Journal 112, no. 3 (2017): 146a. http://dx.doi.org/10.1016/j.bpj.2016.11.803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Staley, Ben, Egor Zindy, and Alain Pluen. "Quantifying uptake and distribution of arginine rich peptides at therapeutic concentrations using fluorescence correlation spectroscopy and image correlation spectroscopy techniques." Drug Discovery Today 15, no. 23-24 (2010): 1099. http://dx.doi.org/10.1016/j.drudis.2010.09.402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Cainero, Isotta, Elena Cerutti, Mario Faretta, et al. "Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS)." Sensors 21, no. 6 (2021): 2010. http://dx.doi.org/10.3390/s21062010.

Texte intégral
Résumé :
Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that i
Styles APA, Harvard, Vancouver, ISO, etc.
46

Semrau, S., and T. Schmidt. "Particle Image Correlation Spectroscopy (PICS): Retrieving Nanometer-Scale Correlations from High-Density Single-Molecule Position Data." Biophysical Journal 92, no. 2 (2007): 613–21. http://dx.doi.org/10.1529/biophysj.106.092577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chakraborty, Hirak, Md Jafurulla, Andrew H. A. Clayton, and Amitabha Chattopadhyay. "Exploring oligomeric state of the serotonin1A receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function." Faraday Discussions 207 (2018): 409–21. http://dx.doi.org/10.1039/c7fd00192d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Arrabito, G., F. Cavaleri, V. Montalbano, V. Vetri, M. Leone, and B. Pignataro. "Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS)." Lab on a Chip 16, no. 24 (2016): 4666–76. http://dx.doi.org/10.1039/c6lc01072e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hao, Huiyan, Wenyu Liu, and Xulin Yu. "Detection of Abnormal Blood Flow Region Based on Near Infrared Correlation Spectroscopy." Photonics 11, no. 9 (2024): 798. http://dx.doi.org/10.3390/photonics11090798.

Texte intégral
Résumé :
Blood flow measurement of microvessels in human tissues is of vital importance for the diagnosis and treatment of many diseases. In this paper, the detection method of abnormal blood flow regions based on near-infrared correlation spectroscopy is studied. We used the NL-Bregman-TV imaging algorithm to realize Blood flow imaging. However, due to the limitation of the number and distribution of detectors, the pixels obtained from images are extremely low, which cannot meet the practical requirements of the visual and the abnormal blood flow range measurement. In this paper, the bicubic interpola
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bachir, Alexia I., Nela Durisic, Benedict Hebert, Peter Grütter, and Paul W. Wiseman. "Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy." Journal of Applied Physics 99, no. 6 (2006): 064503. http://dx.doi.org/10.1063/1.2175470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!