Thèses sur le sujet « Inhibiteur de la tyrosine kinase »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Inhibiteur de la tyrosine kinase ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Chevot, Franciane. « Conception et synthèse d'inhibiteurs de la tyrosine kinase Tyro3 ». Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112024.
Texte intégralAfter heart diseases, cancer is the most important cause of death. Cancerous cells are normal cells which multiplication and regulation system have been affected. They anarchically grow and give tumors. We have investigated in bladder cancer which is fourth cancer among men and ninth cancer among women in industrial countries. Amongst overexpressed receptors in bladder cancerous cells, Tyro3 seems to be essential for the survival of bladder cancerous cells. First goal of this thesis is to synthesize a potent and selective inhibitor of Tyro3 with a purine scaffold. Two approaches have done. The first approach is the synthesis of a type I inhibitor whereas the second approach is the synthesis of a type II inhibitor. Two compounds have shown an interesting activity against Tyro3 at 1 µM and they seem to be type II inhibitors. The second part of the thesis was the functionalization of position 2 and 8 of purine scaffold. We show first the double deprotonation by lithium species of 6-chloro-9-(tétrahydro-2H-pyran-2-yl)-9H-purine following by substitution with different electrophiles. Obtained 2,8-di-iodine compound is engaged in Sonogashira reaction which gives 2-alkyne or 2,8-di-alkyne compunds. And, we investigate in palladium catalyzed amidation and amination of 8-iodo-6-(phénylsulfanyl)-9-(tétrahydro-2H-pyran-2-yl)-9H-purine
Komla-Ebri, Davide Selom Komi. « Nouvelles approches thérapeutiques pour l’achondroplasie ». Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB040/document.
Texte intégralMissense mutations in the tyrosine kinase receptor FGFR3 (Fibroblast Growth Factor Receptor 3) lead to its overactivation causing biological dysfunctions in several diseases. Achondroplasia, the most common Fgfr3-related chondrodysplasia, is a rare genetic disorder, affecting 1 in 20000 live births, characterized by particular clinical features: rhizomelic dwarfism, short limbs, macrocephaly, midface hypoplasia, cervicomedullary compression. The abnormal activity of the receptor induces endochondral ossification defects that are responsible for the pathological phenotype. For a long time the only treatment for this disease was the limb lengthening surgery, however in recent years several researchers have developed potential therapeutic strategies based on molecular studies. The objective of my thesis was to evaluate a novel therapeutic approach for achondroplasia. A promising therapeutic strategy involved the use of small chemical inhibitors, known as tyrosine kinase inhibitors, that are able to arrest the FGFR3 activity. I have assessed the effects of one of these compounds, NVP-BGJ398, in a mouse model mimicking the acondroplastic dwarfism (Fgfr3Y367C/+). The experiments performed showed an improvement of all pathological hallmarks in NVP-BGJ398 treated mice. We have also inspected the impact of the activating FGFR3 mutation on the mandibular development. The study established a defect in mandibular growth in both affected patients and mice. Furthermore we could investigate the mandibular bone growth and correct the pathological defect with NVP-BGJ398. Finally I have participated in molecular analyses to describe how three FGFR3 mutations at the same position could lead to three different dwarfisms with increasing severity. The results provided a better understanding of FGFR3 pathological molecular mechanisms and could lead to new targets for therapeutic approaches
Dang-Trung, Khoi͏̈-Nguyên. « Intérêt potentiel en chimiothérapie anticancéreuse des inhibiteurs de protéines à activité tyrosine kinase : exemple de la génistéine ». Paris 5, 1995. http://www.theses.fr/1995PA05P119.
Texte intégralHammam, Kahina. « Nouveau concept de resensibilisation à la chimiothérapie en activant la nucléoside kinase dCK par le masitinib, un inhibiteur de protéines tyrosine kinases ». Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5047.
Texte intégralResistance to chemotherapy is considered as one of the major blockers of its efficacy. Recently, our team demonstrated that masitinib, a new tyrosine kinases inhibitor, possesse a resensitization activity of cell lines resistant to chemotherapy when associated with chemodrugs.The aim of this work is to determine signaling pathways, modulated by masitinib action, that could explain the resensitization to chemotherapy and improvement of anti-tumoral activity.In the first part of this work, we identified the nucleoside kinase dCK (deoxycytidine kinase), a chemotherapy activating protein, as a new target of masitinib. In summary, this first part of the work allowed us to describe a new and never described concept: masitinib, a small molecule belonging to tyrosine kinases group, can also play a role as nucleoside kinase activator.We were able to demonstrate through the second part of the work that the combined treatment of the epidrug decitabine and masitinib can be more effective than decitabine treatment for the re-expression of some genes non or weakly induced by decitabine when used alone.In conclusion, These data allowed us to introduce an interaction between a tyrosine kinases inhibitor and a nucleoside kinase, as an enzymatic activation new concept. This could be used as a base for the design of new small chemical molecules specific for dCK or other nucleoside kinases essential for the activation of chemodrugs. This concept will obviously help to imagine and evaluate more potential therapeutic combinations of chemodrugs and small chemical molecules to overcome the resistance to chemotherapy dependent on nucleoside kinases
Bencteux, Edith. « Conception et synthese d'inhibiteurs d'activite proteine tyrosine kinase potentiellement actifs dans le traitement du cancer ». Lille 2, 1997. http://www.theses.fr/1997LIL2P264.
Texte intégralLeroux, Florence. « Etude in vitro d'inhibiteurs de tyrosine kinases et de phosphodiesterases et d'un analogue du vasoactive intestinal peptide potentiellement actifs dans l'asthme ». Lille 2, 1996. http://www.theses.fr/1996LIL2P253.
Texte intégralNguyen, Van tai. « Physiopathologie des toxicités hématologiques et vasculaires des inhibiteurs de récepteurs à activité tyrosine kinase anti-angiogénique dans le traitement du cancer ». Electronic Thesis or Diss., Paris 13, 2025. http://www.theses.fr/2025PA131002.
Texte intégralAnti-angiogenic tyrosine kinase inhibitors (TKIs) have become major drugs for the treatment of various cancer types, but with an overall high incidence of severe toxicities, particularly haematological toxicities including severe anemia. Considerable differences have been observed across TKIs.In this thesis, we performed a meta-analysis to more efficiently assess the toxicity prevalence of the different anti-angiogenic TKIs among cancer patients, and in sub-populations of interest including patients with renal cell carcinoma. Using preclinical murine models, we demonstrated that anti-angiogenic TKIs induced a broad range of toxic effects on normal tissues through a cytotoxic effect on normal endothelial cells. Haematological toxicities were particulary marked with sunitinib. We showed that sunitinib-induced hypoxia through the destruction of normal vessels in the bone marrow mainly affected erythrocyte and myeloid lineages, and this was associated with a blockage in erythrocyte maturation. Althought sunitinib-induced anemia was associated with an adaptative response to systemic hypoxia, we demonstrated that erythropoietin (EPO) concentrations in the total bone marrow of sunitinib-treated mice were significantly lower than in untreated mice. This is coherent with the destruction of microvessels in the bone marrow under sunitinib treatment, preventing circulating EPO from reaching the bone marrow at relevant concentrations. We demonstrated an additional effect specific to sunitinib that induced autophagy flux inhibition in erythroid progenitors, with a blockage of erythrocyte maturation, leading to more severe anemia.In our study, we deciphered the pathophysiology of anti-angiogenic TKI-induced anemia, which we found to be mainly linked to a direct effect on bone-marrow normal vessels and also to autophagy flux inhibition in erythroid progenitors under sunitinib. Our study has potential translational applications for the choice of anti-angiogenic TKIs and the management of treatment-induced anemia
Mésange, Paul. « Influence d’inhibiteurs tyrosine kinase sur la biologie et la survie de cellules de cancer colorectal ». Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05P635/document.
Texte intégralThe aim of the work is to characterize the influence of VEGF signaling , especially autocrine VEGF signaling , the biology and susceptibility / resistance to anticancer drugs of colorectal cancer cells. We wished to characterize the impact of the autocrine VEGF signaling in CRC models with natural resistance to bevacizumab , an anti -VEGF antibody. Although this compound is active in the CRC, a subpopulation of patients do not respond to treatment. Our results show an autocrine regulatory pathway HIF- VEGF- VEGFR in response to prolonged exposure to bevacizumab in bevacizumab resistant cells. If the resistance to the antibody is established, other inhibitos of VEGF pathway remain active (such as small molecule nintedanib ) and can inhibit the mTOR pathway. Autocrine VEGF signaling plays a role in CRC cell survival. In subjects resistant to bevacizumab, it would be interesting to introduce the nintedanib alone or in combination to enhance the angiogenic inhibition. Another combination of targeted agents ( anti-VEGF (R) and anti EGFR) has shown efficacy in preclinical models of CRC. The combination of bevacizumab and a small molecule targeting EGFR (erlotinib) showed greater efficacy than bevacizumab alone in CRC models regardless of KRAS status. Bevacizumab induces activation of the EGFR survival pathway in tumor cells and in endothelial cells associated with the tumor. This activation is decreased with the introduction of erlotinib. The results indicate that the combination of bevacizumab and erlotinib are more active in maintenance therapy than bevacizumab alone, even for patients mutated KRAS . These findings led to the positive Phase III clinical study GERCOR DREAM in metastatic colon cancer
Losson, Hélène. « Combinaisons de nouveaux inhibiteurs de désacétylase d’histones 6 avec des inhibiteurs de tyrosine kinase pour le traitement de la leucémie myéloïde chronique ». Thesis, Université de Lorraine, 2020. http://www.theses.fr/2020LORR0003.
Texte intégralBreakpoint cluster region-Abelson (BCR-ABL)+ chronic myeloid leukemia (CML) patients receive tyrosine kinase inhibitors (TKIs) such as imatinib as the first-line treatment; however, some patients develop resistances and severe adverse effects. Combination treatments, especially with histone deacetylase (HDAC)6 inhibitors (HDAC6i), appear as an attractive option to prevent TKI resistances considering the capacity of HDAC6i to downregulate BCR-ABL. Moreover, HDAC6 is implicated in protein degradation pathways, so that its inhibition combined with that of the proteasome could sensitize cells to TKIs. Thus, we hypothesized that HDAC6i combined to TKIs could be effective for CML treatment. In the first part, we compared the anti-CML effects of a HDAC6i identified in our laboratory, compound 7b, to the reference HDAC6i tubacin, in combination with imatinib. Results showed that the imatinib-7b combination generated stronger anti- CML effects than imatinib-tubacin. Especially, the imatinib-7b combination elicited a potent synergistic caspase- dependent apoptotic cell death and drastically reduced the proportion of cancer stem cells in K562 CML cells, whereas it only moderately impacted various healthy cell models. Ultimately, the imatinib-7b combination decreased more potently the colony forming capacities and tumor mass formation of CML cells in a semisolid methylcellulose medium and in xenografted zebrafishes, respectively, compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation leading to a dysregulation of multiple key proteins of its downstream pathways involved in CML proliferation and survival. Results tend to demonstrate that 7b could target the second site. In the second part, we initiated a study of a novel hydroxamate-based HDAC6i, MAKV-15, and preliminary results demonstrated it triggered BCR-ABL downregulation. Accordingly, in pre-treatment with bortezomib it sensitizes CML cells to imatinib leading to enhanced caspase-dependent apoptotic death in imatinib-sensitive and imatinib-resistant CML cells. Considering that HDAC6 is reported to possess two functional catalytic sites, we finally attempted to determine which catalytic site is targeted by these HDAC6i. Taken together, our results suggest that HDAC6i potentiate the effect of imatinib and could overcome TKI resistance in CML cells and therefore such combination may represent a promising therapeutic approach for CML patients
Peyressatre, Marion. « Développement de biosenseurs fluorescents et d’inhibiteurs pour suivre et cibler CDK5/p25 dans le glioblastome ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONT3513/document.
Texte intégralCDK5 is a protein kinase ubiquitously expressed but mainly activated in the central nervous system, where it plays an important role in neuronal functions such as synaptic transmission, axonal guidance and migration, synaptic plasticity and neuronal development. CDK5 is associated with p35 protein at the cell membrane, then activated by calpain-mediated cleavage of p35 into p25, which promotes relocalization of CDK5/p25 into the cytoplasm. CDK5/p25 phosphorylates a wide variety of substrates including Tau, thereby contributing to appearance of neurofibrillary plaques responsable for neurodegenerative pathologies such as comme Alzheimer’s et Parkinson’s, when hyperactivated. More recent studies suggest that CDK5 expression and hyperactivation are involved in glioblastoma during cell invasion and CDK5 expression has been reported to be correlated with the pathological grade of gliomas. However there are currently no tools available to monitor CDK5/p25 activity in its native cellular environment, in tissues or in tumours, due to an overall lack of reliable tools to quantify dynamic changes in its kinase activity in a sensitive and continuous fashion. Furthermore, few inhibitors are currently available to target CDK5/p25 in a specific fashion and most of them are ATP competitive inhibitors.The first goal of my thesis was to develop a fluorescent peptide biosensor named CDKACT5, that specifically reports on recombinant CDK5/p25 and on endogenous CDK5 activity in cell extracts in a dynamic and reversible fashion following stimulation or inhibition of this kinase. Once validated in vitro, this biosensor was applied to detect alterations in CDK5/p25 activity in different glioblastoma cell lines in fluorescent kinase activity assays. Finally CDKACT5 was introduced into cultured neuronal cells to monitor dynamic changes in CDK5/p25 activity by fluorescence imaging and time-lapse microscopy.The second goal of my thesis project consisted in developing a conformational fluorescent biosensor to identify non-ATP competitive inhibitors targeting the activation loop of CDK5. CDKCONF5 was implemented to perform a high throughput screen of three small molecule libraries. The hits identified were validated and characterized to determine their inhibitory potential in kinase activity and proliferation assays, as well as their mechanism of action. These compounds constitute promising for selective chemotherapy in glioblastoma
Lermet, Anne. « Synthèse d'inhibiteurs de la protéine à activité tyrosine kinase c-kit de type sauvage et muté ». Lyon 1, 2006. http://www.theses.fr/2006LYO10026.
Texte intégralDulucq, Stéphanie. « Pharmacogénétique et pharmacogénomique des inhibiteurs de tyrosine kinases : exemple de la leucémie myéloide chronique ». Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21972/document.
Texte intégralTyrosine kinases inhibitors (TKIs) are a new class of drugs having bloomed over the past decade. As competitive inhibitors of the adenosine triphosphate, they are used in the treatment of many cancers in which deregulation of tyrosine kinases has been demonstrated. In spite of dramatic efficacy, cases of resistance have been reported particularly with chronic myeloid leukemia (CML) and TKI treatment. This inter-individual variability may be due to mechanisms of intrinsic resistance of tumor cells or changes in the pharmacokinetic parameters of the molecule. Numerous studies have analyzed the impact of polymorphisms (SNPs) in genes coding for pharmacokinetic and pharmacodynamic determinants. We analyzed the impact of SNPs on major molecular response at 1 year in 2 cohorts of patients with CML treated with imatinib. C1236T, G2677T/A, C3435T, three SNPs in the MDR-1 gene encoding P-glycoprotein and SNPs in the coding region of the SLC22A1 gene encoding hOCT1. The protective impact of the 1236T allele or haplotype*4 and the pejorative impact of the 2677G allele or haplotype*1, found in the 1st cohort, were not replicated in the 2nd cohort, suggesting minor or no impact on the response to imatinib. The impact of SLC22A1 SNPs observed in the 2nd cohort needs to be confirmed. Further works on a larger cohort, according to criteria that need to be harmonized, are necessary before we reach a “personalized medicine” for imatinib but also for all TKIs
Grignon, Sylvain. « La culture de neurones granulaires du cervelet comme modele d'etude de la pharmacologie cellulaire du lithium (doctorat : neurosciences) ». Aix-Marseille 2, 1996. http://www.theses.fr/1996AIX20657.
Texte intégralRavez, Séverine. « Conception, synthèse et évaluation pharmacologique d’hétérocycles azotés à visée anticancéreuse ». Thesis, Lille 2, 2014. http://www.theses.fr/2014LIL2S018/document.
Texte intégralAccording to the International Agency for Research on Cancer, cancer is the first cause of death in France with about 150 000 deaths estimated in 2012. This disease is characterized by anarchistic and uncontrolled proliferation of cells that escape control mechanisms. Currently, the anticancer drugs target mainly the cancerous cells that overexpress proteins, such as growth factor receptors with tyrosine kinase activity.Our work is mainly carried on four of these receptors: EGFR (Epidermal Growth Factor Receptor), VEGFR (Vascular Endothelial Growth Factor Receptor), PDGFR (Platelet-Derived Growth Factor Receptor) and c-Kit receptor. Several heterocycles (quinazoline, benzotriazine, thienopyrimidine) differing by their aniline or aryloxy moiety in C-4 position were designed, synthesized and evaluated. Among these products, the 4-aryloxyquinazolines substituted by aminoalkoxy chains in C-7 position have the characteristic to be potent inhibitors of VEGFR, PDGFR and c-kit receptor with high anti-angiogenic potency. Simultaneously, 2-aminoquinazoline derivatives were designed. These compounds substituted by various anilines in C-4 position showed interesting antiproliferative activity through their intercalation between the pairs of DNA bases
Naud, Josy Baldaheania. « Inhibition du transport des analogues nucléosidiques par l'inhibiteur de tyrosine kinase nilotinib ». Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24025.
Texte intégralLiu, Peng. « Mort cellulaire immunogène induite par le crizotinib dans le cancer poumon non à petites cellules ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS148.
Texte intégralAccumulating evidence suggests that certain conventional chemotherapies, radiotherapies, as well as targeted therapies mediate their long-term therapeutic success by inducing immunogenic cell death (ICD), which stimulate the release or exposure of danger-associated molecular patterns from or on cancer cells, causing their recognition by the immune system, thus reinstating immunosurveillance. An unbiased screen identified crizotinib as a tyrosine kinase inhibitor that is potent in provoking hallmarks of ICD. In subsequent low-throughput validation experiments, crizotinib promoted Calreticulin exposure, ATP secretion, HMGB1 release, as well as ER stress in both human and murine cancer cells, especially if it is combined with normally non-ICD inducing chemotherapeutics such as cisplatin. ICD induced by the combination of chemotherapy and crizotinib was also observed in non-small cell lung carcinoma (NSCLC) cells lacking activating mutations of the crizotinib targets ALK and ROS1, suggesting an off-target-mediated mode of action. Comparative studies indicated that exclusively the clinically used (R) isoform of crizotinib was efficient in inducing cell death and stimulating ICD hallmarks whereas the (S) enantiomer lacked those characteristics. When combined with cisplatin, crizotinib-killed fibrosarcoma MCA205 cells as well as lung cancer TC-1 cells efficiently vaccinated syngeneic immunocompetent mice against a re-challenge with live cancer cells of the same types. Crizotinib improved the efficacy of chemotherapy with non-ICD inducers (such as cisplatin and mitomycin C) on three distinct (transplantable, carcinogen- or oncogene induced) orthotopic NSCLC models, none of which relied on the activation of ALK or ROS1. Of note these anticancer effects were completely lost if any of the ICD signals was blocked. These anticancer efficacies in different models were linked to an increased T lymphocyte infiltration as a sign of an immune response and were lost if such tumors grew on immunodeficient (nu/nu) mice that are athymic and hence lack thymus-dependent T lymphocytes, or on immunocompetent mice with a neutralization of interferon-. The combination of cisplatin and crizotinib led to an increase in the expression of CTLA-4, PD-1 and PD-L1 in tumors, coupled to a strong sensitization of NSCLC to immunotherapy with antibodies blocking CTLA-4 and PD-1. Hence, a combination of crizotinib, conventional chemotherapy and immune checkpoint blockade may be active against NSCLC, and these data might facilitate the design of clinical trials to evaluated novel combination regiments for the treatment of NSCLC
Lucas, Romain. « Synthèse totale et évaluation biologique d’un inhibiteur d’origine naturelle de la kinase DYRK1A ». Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05P613.
Texte intégralThis thesis focuses on the synthesis of RCZ, a natural compound isolated from the plant Scorzonera radiata. During a high-throughput screening, this compound has demonstrated, on a large panel of kinases, a high and unusual degree of selectivity against the kinase DYRK1A. On a structural point of view, the compound is a glycosylated dihydrostlibene, which also bears two phenols and an acetyl group. Recently, a link between the deregulation of the kinase DYRK1A with Down syndrom and some neurodegenerative diseases such as Alzheimer disease has been established. In order to perform the synthesis of this compound, three approaches were undertaken. In these approaches, the acetyl group was built through a Sonogashira coupling followed by a mercury salt catalyzed hydration of the acetylenic group. Also, the stilbene scaffold was always obtained by Wittig condensdation. In the first approach, an isomer was obtained with approximately a ten times less potent inhibitory activity against DYRK1A than RCZ. By the use of different protective groups the final compound RCZ was successfully obtained. In conclusion, a total and efficient synthesis of RCZ has been constructed in 15 steps. This work opens future perspective in the design of new inhibitors based on the determination of the crystal structure of the RCZ-DYRK2 complex
Cortot, Alexis. « Etude des mécanismes de résistances primaire et acquise aux inhibiteurs du récepteur de l’Epidermal Growth Factor dans le cancer bronchique non à petites cellules ». Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10296.
Texte intégralEpidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKI) provide clinical efficacy in Non Small Cell Lung Cancer (NSCLC) patients, especially in the presence of an EGFR mutation. However, some EGFR mutated patients display primary resistance to EGFR TKI, and the others will ultimately develop acquired resistance. We focused our work on mechanisms of primary and acquired resistance in EGFR mutated NSCLC.We first showed that KRAS mutational status is the same in primary NSCLC and matched metastases in most of the cases. However, in some patients, we found a discordant KRAS status between primary tumors and metastases, which could translate into a discordant response to EGFR TKI, since KRAS mutations are associated with resistance to EGFR TKI.We also showed that EGFR mutated tumors are associated in most of the cases with an inactivation of the p53 pathway, either through a TP53 mutation or through loss of expression of p14arf, which could account for some of the variations observed in the response to TKI in EGFR mutated patients.Last, we showed that acquired resistance to two new generation EGFR TKI, PF299804 and WZ4002, occurred through a multistep process involving activation of the IGF1R pathway through downregulation of IGFBP3 and activation of the MAP kinase pathway. These results provide new insights into the treatment of NSCLC in EGFR mutated patients with acquired resistance to new generation TKI
Mustafa, Wesam Waleed. « Delivery of tyrosine kinase inhibitor to colorectal cancer cells using particulate systems ». Thesis, Kingston University, 2016. http://eprints.kingston.ac.uk/35596/.
Texte intégralJoudinaud, Romane. « Étude de l'hétérogénéité des clones mutés FLT3 dans la leucémie aiguë myéloïde et implication dans la réponse au traitement ». Electronic Thesis or Diss., Université de Lille (2022-....), 2025. http://www.theses.fr/2025ULILS001.
Texte intégralNPM1 and FLT3-ITD mutations are the most commonly detected at acute myeloid leukemia (AML) diagnosis.NPM1-mutated AMLs have a favorable outcome. However, they display highly heterogeneous co-mutations and phenotypes, which can influence both prognosis and response to treatment. To explore the link between somatic mutations and phenotypic differentiation, we used a multi-omics single-cell sequencing platform on 11 NPM1-mutated AML diagnostic samples. Our analysis revealed unique associations between co-mutations and surface protein expression. Although these associations were patient-specific, they allowed the enrichment of genetic subclones by cell sorting,paving the way for the functional characterization of minority genetic clones.Since 2017, FLT3-mutated patients have been treated in the first-line setting with a combination of intensive chemotherapy (ICT) and the FLT3-inhibitor midostaurin (MIDO). Although the addition of MIDO has improved overall survival, complete remission rates remain close to 60-70%, and relapses still occur in over 40% of cases.To identify the underlying mechanisms of resistance, we conducted a retrospective,multicenter study including 150 relapsed or refractory (R/R) patients harboring FLT3-ITD (n = 130) and/or FLT3-TKD (n = 26) at diagnosis as assessed by fragment analysis. Patients were treated in front-line with either ICT and MIDO (n = 54) or ICT alone (n = 96). For the first time, we examined the evolution of FLT3-ITD clones between diagnosis and R/R disease with a high-throughput sequencing approach allowing the detection of FLT3-ITD microclones (allelic ratio < 0.05). We demonstrated that the addition of MIDO to ICT reduced the FLT3-ITD persistence rate at R/R disease.In patients receiving ICT and MIDO, the presence of several FLT3-ITD clones at diagnosis was associated with a higher probability of retaining a positive FLT3-ITDstatus at R/R disease. Considering both treatment groups, if only 24% of FLT3-ITDmicroclones were retained at relapse, 43% of these became macroclones. Together,these results identify some parameters influencing the fitness of FLT3-ITD clones and highlight the importance of using sensitive techniques for FLT3-ITD screening inclinical practice
Eimer, Sandrine. « Etude des réponses induites par l’erlotinib dans des cellules de lignées de glioblastome ». Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21822/document.
Texte intégralGlioblastoma (GBM) is the most common primary central nervous system tumor in adults and the prognosis remains dismal, any treatment used. Epidermal Growth Factor Receptor (EGFR) is amplified, overexpressed, and/or mutated in GBM, making it a rational for therapy. Erlotinib, an EGFR kinase inhibitor is strongly associated with clinical response in several cancers. We showed for U87-MG and DBTRG-05MG, two human GBM cell lines, that erlotinib can’t trigger apoptosis, related either to accumulation of αB-crystallin capable to impair caspase 3 cleavage, or to constitutive deficit for procaspase 3 in DBTRG-05MG. Apoptosis deficit switches the cell to autophagic process. Inhibition of autophagy with RNA interference or chloroquine resulted in sensitization of U87 and allowed a synergistic effect with erlotinib at therapeutic doses.Moreover, GBM showed a heterogeneous cell composition with cancer stem cells, progenitors and more differentiated cells. In this study, we test erlotinib in vitro on other GBM models: three cell lines established from surgically resected GBM specimens, grown along two features adherent and neurospheres. On the three differentiated adhering cell lines, erlotinib had only a moderate activity. Conversely, on neurosphere forming cell lines, erlotinib induced a strong inhibition of cell growth related to the EGFR amplification and EGFR expression. A short erlotinib exposure induced cell death primarily in nestin-positive cells; however it was found without effect on neurosphere initiating activity and self renewal. These results suggest that EGFR pathway activation is essential for the proliferation of GBM progenitor cells but dispensable for stem-like cancer cells self–renewal. As Hedgehog pathway is known to be activated in neural stem cells, we assayed the Hedgehog pathway inhibitor cyclopamine in association with erlotinib. While each drug separately was without effect on sphere initiation, their combination led to a 25 fold decrease in the sphere number (p=0.0004).These in vitro models are convenient to investigate resistance mechanisms in GBM. Furthermore, they focus on the necessity to exploit drug combinations for greatest efficiency
Jacomet, Florence. « Étude d'une nouvelle population de lymphocytes T « innate-memory » : implication dans l'immunité anti-leucémique au cours de la leucémie myéloïde chronique ». Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT1406/document.
Texte intégralChronic myeloid leukemia (CML) is a myeloproliferative disorder that results from dysregulated tyrosine kinase activity of the fusion oncoprotein BCR-ABL, which is sufficient to induce malignant transformation. A critical role of the immune system in the control of CML is supported by several reports. Invariant Natural Killer T (iNKT) lymphocytes are a population of non-conventional T cells that are believed to play a key role in cancer immunosurveillance. Here, we showed that CML in chronic phase is associated with anergy of iNKT cells that is restored upon complete cytogenetic remission (CCyR) following Imatinib Mesylate (IM) or IFN-α therapy. In mouse, iNKT cells are involved in the generation of a recently characterized subset of innate CD8 T cells. Importantly, we provided definitive evidence of the existence of an equivalent of these innate CD8 T cells in humans, harboring innate and memory phenotype with high Eomesodermin expression. These cells also exhibited innate functions such as prompt IFN-γ expression in response to innate stimulation by interleukin (IL)-12 and IL-18 and cytolytic activity in a TCR independent manner.Size and functions of this innate-like CD8 T cell subset were severely impaired in CML patients at chronic phase. These defects were partially reversed in patients who achieved CCyR following IM treatment.Altogether, these results reveal a possible contribution of innate CD8 T lymphocytes in anti-leukemic immunity and should contribute to development of immunotherapeutic strategies against CML
Telliez, Aurélie. « Etude du mécanisme d'action d'inhibiteurs de l'activité tyrosine kinase de l'EGFR sur des lignées cancéreuses prostatiques humaines ». Lille 2, 2006. http://www.theses.fr/2006LIL2S037.
Texte intégralBennasroune, Amar. « Récepteurs à tyrosine kinase en tant que cibles thérapeutiques : vers de nouvelles classes d'inhibiteurs ? » Strasbourg 1, 2003. http://www.theses.fr/2003STR13214.
Texte intégralAiriau, Kelly. « Association in vitro de molécules ciblant les inhibiteurs de l’apoptose pour induire spécifiquement la mort des cellules tumorales ». Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21953/document.
Texte intégralProtein kinases have been identified as playing fundamental roles in cancer development, suggesting that they could represent a promising therapeutic target. Several kinase inhibitors have been developed and the most successful of them, by far, is Gleevec® (imatinib, STI57; Novartis), a BCR-ABL inhibitor. It is currently used as the treatment of reference for chronic myeloid leukemia. However, despite a huge efficiency, some resistance mechanisms could be used to decrease its pro-apopototic effect. The global aim of my PhD was to understand the apoptotic mechanisms induced by tyrosine kinase inhibitors (TKI) to identify new potential therapeutic targets. I work on three different tumors: Chronic Myeloid Leukemia (CML), Acute Myeloid Leukemia (AML) and Glioblastomas (GBM). CML has been used as a model and the approach followed to increase TKI efficiency has been transposed to AML and GBM models. Altogether, our results showed that a better understanding of apoptotic response and resistance mechanisms could lead to the identification of new therapeutic targets. We observed that combination therapy brings several benefits. It allows to increase the TKI-induced apoptotic response, to counter some resistance mechanism, to reach the resistant cancer stem cells, and thus, to target simultaneously several populations in the tumour
Mazed, Fetta. « Etude des mécanismes de résistance aux inhibiteurs de FLT3 dans les leucémies aigues myéloïdes ». Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC089.
Texte intégralAcute myeloid leukemia (AML) is a heterogeneous group of hematological malignancies resulting from the clonal proliferation of a myeloid progenitor blocked in its differentiation. The prognosis of AML is generally unfavorable, depending on age, cytogenetic and molecular factors. The FLT3-ITD mutation, (internal tandem duplication) is detected in 30% of AML patients and correlates with an increased frequency of relapses and an unfavorable prognosis. FLT3-ITD mutations leads to a deregulated and constitutive activation of FLT3 receptors, inducing an oncogenic addiction of leukemic blasts to FLT3-dependent signaling pathways, pinpointing FLT3 as a relevant therapeutic target in AML. Thus, many tyrosine kinase inhibitors (TKI) targeting FLT3 have been developed, some of which harboring significant efficacy in monotherapy and even improving patients’ survival when combined with conventional treatments. However, most patients treated by TKI monotherapy, and a significant proportion of those treated with combined approaches will relapse, due to various escape mechanisms. To study these mechanisms is therefore a major goal to improve the efficacy of treatments in FLT3-ITD LAM which I undertook during my thesis. First, I built on my team’s previous work to discover a new target of PIM2, the RSK2 serine threonine kinase, using transcriptomic and proteomic approaches. We showed that RSK2 expression was greatly decreased following the invalidation of PIM2 by RNA interference in a FLT3-ITD AML line (MOLM-14), both at the mRNA and protein levels. By BH3 profiling, we connected RSK2 to the control of mitochondrial apoptosis in the context of FLT3-ITD cells. We then observed that RSK2 overexpression compensated apoptosis induced by PIM2 knockdown, thus reinforcing the role of this new PIM2/RSK2 pathway in the control of cell survival. Finally, we suggested that RSK2 may be involved in TKI resistance in mouse models of AML. To address the question of FLT3-ITD resistance mechanisms more broadly, I adapted a CRISPR/dCas genome wide library on our AML model, with the purpose of screening it with different TKI to unravel new mechanisms of resistance to these compounds. I used the dCas9 enzyme, devoid of endonuclease activity but modulating target genes expression; inhibition in case of dCas9/KRAB fusion (CRISPRi), or activation in dCas9/VP64 fusion (CRISPRa). Both dCas9 and libraries were transduced by lentiviruses in two FLT3-ITD cell lines (MOLM-14 and MV4-11), grown in liquid culture or on a mesenchymal stromal cells (MSC) layer, and treated either with DMSO or with one of the 3 following ITKs: quizartinib, midostaurine or ponatinib. The identification and quantification of RNAs guides by high-throughput sequencing and bioinformatic identify potential new mechanisms of intrinsic resistance (liquid culture) and / or extrinsic (co-culture MSCs) to TKI. The third area of my work focused on the characterization of global signaling changes induced by FLT3-ITD tyrosine kinase domain (TKD) mutations associated with TKI resistance
Šramel, Peter. « A synthesis and biological screening of predicted inhibitors of Tyrosine Kinases, e.g. KDR, designed in silico ». Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF064.
Texte intégralProtein kinases represent a group of enzymes responsible for phosphorylation - transfer of aphosphate group from adenosine triphosphate (ATP) to tyrosine or serine/threonine residues. Protein phosphorylation is one of the most important tools regulating a cell activity. A cell "signalization" through an endothelial receptor tyrosine kinase VEGFR2 TK (KDR) is the important pathway influencing growth of a tumor. Small-molecule inhibitors of VEGFR2 TK (VEGFR2 TKls) have become an important tool for the treatment of various types of cancer. This dissertation thesis resulted in a discovery of 16 biologically active N,5-diaryloxazol-2-amines (IC50, VEGFR2 TK). Very good results were achieved especially with compounds 189, 191, 211, 214, 220, 221, 223 and 4 exhibiting the activity under 500 nM
Zhao, Tong Tong. « Mechanism and Therapeutic Potential of Statin-Mediated Inhibition of Tyrosine Kinase Receptors ». Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20334.
Texte intégralClapper, Erin M. « Investigating Intrinsic and Extrinsic Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukaemia ». Thesis, Griffith University, 2021. http://hdl.handle.net/10072/409643.
Texte intégralThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
GALIMBERTI, CHIARA. « Preliminary characterization of CR13626, a novel tyrosine kinase inhibitor for the treatment of glioblastoma ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/365481.
Texte intégralAt Rottapharm Biotech, a novel small molecule compound called CR13626 has emerged as a novel tyrosine kinase inhibitor with a good tropism for the brain and the ability to inhibit EGFR, VEGR2, Fyn, Yes, Lck, HGK and RET kinases relevant for the development of glioblastoma (GBM), the most common and malignant type of primary brain tumor. In addition, CR13626 resulted to be not a substrate of multidrug transporters involved in tumour resistance. Thus, the aim of my project is to characterize the activity of the compound, both in vitro and in vivo, to investigate the potential of CR13626 for glioblastoma therapy. To this purpose, I firstly investigated the ability of CR13626 to inhibit the ligand-induced activation of EGFR and VEGFR2 receptors in U87MG GBM and HUVEC-C cells, respectively, through western blot experiments. To better define the potency of CR13626 on Fyn kinase in a cellular model, I exploited the Fyn-mediated phosphorylation levels of Tau in Fyn/Tau co-transfected HEK-293 cells through a customized indirect-ELISA. Because of VEGFR2 is largely involved in promoting angiogenesis process, which contributes to tumor sustenance, I evaluated the ability of CR13626 to reduce the formation of new vessel-like structures in a HUVEC-C tube formation assay, as an indication of its antiangiogenic properties. Then I verified the effect of CR13626 on cellular proliferation in different 2D human GBM cell lines such as U87MG, U373, U87MG vIII and T98G, each harboring some of the genetic alterations/mutations present in GBM tumor cells. I also evaluated the activity of CR13626 on HEK-293 cells to assess the effect of the compound on a non-tumoral human cell line and to exclude a potential toxicity on healthy cells. Since 3D cell spheroids are more representative of the complexity of tumor environment with respect to 2D cultures and represents a more reliable model to assess cellular response to a drug treatment, I also investigated the efficacy of CR13626 in reducing cellular proliferation in U87MG cells cultured as 3D spheroids. Finally, the antitumor activity of CR13626 was investigated in vivo in an orthotopic xenograft mouse model of GBM based on the injection of U87MG-Luciferase cells in nude mice (experiment performed at Accelera Srl, Nerviano, Italy). Animals were orally treated with CR13626 (50 mg/kg/daily) or vehicle for 10 days, starting on day 9 post-implantation. Tumour progression was evaluated through the measurement of bioluminescence (BLI) at the end of dosing (day 19) and during follow-up (days 26 and 33). The survival of animals was also evaluated. In addition, the plasma and brain concentrations of CR13626 in tumour-bearing mice were determined in a satellite group of animals orally treated for 5 days with CR13626 (50 mg/kg/daily).
Bendjeddou, Lyamin. « Synthèse et évaluation biologique de nouveaux inhibiteurs de kinases : identification d‘inhibiteurs de kinases parasitaires ». Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05P615.
Texte intégralPhosphorylation by protein kinases is one of the most important post-translational modification in cellular processes such as division, differentiation, proliferation and apoptosis. Kinase deregulation is associated with numerous diseases such as cancer or neurodegenerative diseases. Imidazo[1,2-b]pyridazine and imidazo[4,5-b]pyridine were prepared to inhibit protein kinases involved in diseases targeted in the laboratory. The imidazo[1,2-b]pyridazines were synthesized to identify inhibitors of CLK1 and DYRK1A, potential targets in Alzheimer's disease. Among the imidazo[1,2-b]pyridazines synthesized, several molecules were found selective of DYRKs and CLKs, with IC50 < 100 nM. A structure-activity relationship based on the synthesis of 70 molecules, led to the identification of the structural bases of the selectivity. Products were also evaluated against parasite kinases. It was possible to identify some highly potent inhibitors on PfCLK1. The aim of second part of this thesis was to optimize the synthetic process to obtain imidazo[4,5-b]pyridines, which are close analogues of roscovitine. Derivatives had proved capable of inhibiting the formation of cysts in a cellular model of polycystic kidney disease. A seven-step synthesis has led to several grams of 3,5,7-trisubstituted imidazo[4,5-b]pyridine which is now available for evaluation in vivo
Padi, Sathish K. R., Libia A. Luevano, Ningfei An, Ritu Pandey, Neha Singh, Jin H. Song, Jon C. Aster, Xue-Zhong Yu, Shikhar Mehrotra et Andrew S. Kraft. « Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset ». IMPACT JOURNALS LLC, 2017. http://hdl.handle.net/10150/624055.
Texte intégralLeconet, Wilhem. « Signalisation et ciblage thérapeutique du récepteur tyrosine kinase AXL dans les cancers ». Thesis, Montpellier 1, 2014. http://www.theses.fr/2014MON13506.
Texte intégralThe Tyrosine Kinase Receptor (TKR) AXL is implicated in various cellular mechanisms (migration, invasion, angiogenesis and cell proliferation). Its overexpression has been observed in many cancers and is often correlated with poor prognosis. Moreover, this receptor seems to be important in Epithelial to Mesenchymal Transition (EMT), a mechanism related to metastasis formation and resistance to anticancer therapies.We have generated several AXL specific murine monoclonal antibodies. Two of them, 20G7D9 and 3E3E8, have been selected for their inhibition properties in AXL expression and activation by its ligand GAS6. In fact, both antibodies induce internalization and lysosomal degradation of AXL.Then we decided to study AXL expression and role in pancreatic cancer, which is characterized by a dramatic overall survival (<5%, 5 years after diagnosis) and a lack of efficient therapeutic solutions. We observed an ectopic expression of AXL in a majority of patient' pancreatic tumors (76%), notably in the invasive front of the tumor. Targeting AXL with both 20G7D9 and 3E3E8 inhibits its signaling and decreases tumor growth in vitro and in vivo.As AXL is mainly expressed in the invasive front of tumors, we analyzed its role during EMT. We observed that AXL/GAS6 signaling induces EMT in triple negative breast cancer cell lines. Furthermore, its expression is correlated with well-defined EMT markers in basal-like breast cancer tumors. In vitro and in vivo application of our antibodies inhibits AXL-dependant EMT signaling and cellular migration and invasion.In conclusion, this thesis demonstrates the importance of AXL Tyrosine Kinase Receptor in oncogenic processes and the efficacy of targeting this receptor with monoclonal antibodies in cancer preclinical models
Joha, Sami. « Mécanismes de résistance aux inhibiteurs de tyrosine kinase sur le modèle de leucémie myéloïde chronique ». Phd thesis, Université du Droit et de la Santé - Lille II, 2009. http://tel.archives-ouvertes.fr/tel-00451045.
Texte intégralJoha, Mohamad Sami. « Mécanismes de résistance aux inhibiteurs de tyrosine kinase sur le modèle de leucémie myéloïde chronique ». Lille 2, 2009. http://www.theses.fr/2009LIL2S042.
Texte intégralWu, Zherui. « La surexpression et l'activation des récepteurs aux facteurs de croissance par des régulations autocrines ou paracrines à la neurotensine, conférant aux cellules une sensibilité aux inhibiteurs de tyrosine kinase ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066141.
Texte intégralIn 2012, Liver, lung and breast cancers represented 30% of new cancer cases, and 35% of cancer related deaths. Identification of factors contributing to tumor progression can strengthen our understanding of the cancer biology and suggest new therapeutic strategies. In this context, we studied the impact of neurotensin (NTS) and its receptor NTSR1 on tumor progression and its potential clinical application. I have initiated the project in hepatocellular carcinoma (HCC) and participated in the projects on lung and breast cancers initiated by former PhD students. In HCC, on a series of 73 patients, NTS and NTSR1 were detected in 56% and 64% of the cases, respectively. Meanwhile, I showed that NTSR1 expression is the target of the Wnt/¦Â-catenin pathway. The NTS / NTSR1 complex increases the expression and activation of EGFR and promotes the growth of experimental tumors and the ability of the cell for migration and invasion. The regulation between the NTS/NTSR1 complex and EGF receptors were also thoroughly studied in lung and mammary cancers. Indeed, NTS induced the expression and the constitutive activation of EGFR, HER2, and HER3, through the activation of metalloproteinases which released specific "EGF-like" ligands for EGFR and HER3. Constitutive activation of HERs by the NTS/NTSR1 complex mimics the activating mutations of HERs and therefore potentiates the tumor response to tyrosine kinase inhibitors treatment in liver, lung and breast cancers
Yunus, Madiha. « Investigating the Effect of Regorafenib on the Expression and Activity of the Angiogenesis-Modulating Receptor Tyrosine Kinases ». Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29860.
Texte intégralBaldacci, Simon. « Conséquences de la dérégulation de MET sur le phénotype des cancers bronchiques non à petites cellules EGFR mutés devenus résistant aux inhibiteurs de tyrosine kinase d’EGFR ». Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S043/document.
Texte intégralIntroduction: Treatment of Epidermal Growth Factor Receptor (EGFR) mutated non-small cell lung cancers (NSCLC) relies on EGFR tyrosine kinase inhibitors (TKI). However, all patients treated with EGFR TKI eventually present tumor progression, due to mechanisms of resistance such as the MET amplification. There is currently no data on phenotypic changes induced by MET activation in this context. The objective of this thesis is to determine whether the MET amplification during EGFR TKI resistance in the EGFR mutated NSCLC induces a more aggressive phenotype in tumor cells and alters the natural history of the disease.Methods: Proliferation, anchorage independent growth, spheroid formation, anoïkis resistance and migration were studied in vitro in the HCC827 cell line, derived from an EGFR mutated NSCLC, and in its daughter cell line HCC827-GR6 (GR6) which became resistant to EGFR TKI through MET amplification. The expression of vimentin, ZEB1, and E-cadherin was evaluated in these cellular models in order to investigate an epithelial to mesenchymal transition (EMT) process induced by the MET amplification. In vivo, the tumor growth and the metastatic potential were analyzed by subcutaneous xenograft and intracardiac injection in mouse models. Finally, the clinical data of patients from 15 centers with a metastatic EGFR mutated NSCLC, exhibiting high MET overexpression in immunohistochemistry (score 3+) or MET amplification assessed by FISH on a re-biopsy performed after TKI EGFR progression were analyzed retrospectively.Results: In vitro, the MET amplification induced a significant increase in proliferation, anchorage independent growth, spheroid formation, anoïkis resistance and migration. Treatment with PHA-665752, a MET TKI, significantly reduced these biological properties in the GR6 cells harboring the MET amplification. An increase in the expression of vimentin and ZEB1 was also observed in the GR6 cells. In vivo, the MET amplification significantly increased the tumor growth and the metastatic potential. Treatment with crizotinib, another MET TKI, significantly decreased the metastatic potential of cells carrying MET amplification. Finally, patients with an EGFR mutated NSCLC, displayed a time to new metastases after TKI EGFR progression shorter than patients with high MET overexpression without MET amplification.Conclusion: The MET amplification during EGFR TKI resistance is associated in EGFR muted NSCLC with a more aggressive tumor phenotype. These results argue for the early use of MET inhibitors in combination with EGFR TKIs to avoid the emergence of a more aggressive resistant tumor clone
Yamamoto, Noriyuki. « Development of a selective inhibitor for Syk tyrosine kinase and investigation of its pharmacological activities ». 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148369.
Texte intégralMurdoch, Gordon Kenneth. « The modulation of cyclic nucleotides in rat pinealocytes by a tyrosine kinase inhibitor, tyrphostin B42 ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22644.pdf.
Texte intégralSARONNI, DAVIDE. « TYROSINE KINASE INHIBITORS IN NEUROENDOCRINE TUMORS : FROM IN VITRO TO ZEBRAFISH MODEL ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/917967.
Texte intégralLewis, Matthieu. « Identification de voies de résistance aux inhibiteurs de tyrosine kinase dans la leucémie myéloïde chronique par criblage CRISPR-Cas9 ». Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0054/document.
Texte intégralThe characterization of malignant tumour growth and the understanding of resistance mechanisms to treatment in cancer is of utmost importance for the discovery of novel “druggable” targets. Efficient genetic screening, now even more possible with the convergence of CRISPR-Cas9 gene editing technology, next-generation sequencing and bioinformatics, is an important tool for deciphering novel cellular processes, such as resistance to treatment in cancer. Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterised by the t(9;22) genetic abnormality, which encodes the driver of CML, the BCR-ABL1 fusion protein. Imatinib mesylate, a tyrosine kinase inhibitor, specifically eliminates CML cells by targeting and blocking the kinase activity of this protein, yet, as for all targeted therapies in cancer, resistance to treatment exists. In order to discover alternative BCR-ABL1 independent mechanisms of imatinib resistance, we utilized the genome-scale CRISPR knock-out library GeCKO v2 to screen for imatinib sensitising genes in vitro on K562 cells. We revealed genes that seem essential for imatinib induced cell death, such as pro-apoptotic genes (BIM, BAX) or MAPK inhibitor SPRED2. Specifically re-establishing apoptotic capabilities in BIM knock-out (KO) cells with BH3-mimetics, or inhibiting MAP-kinase signalling in SPRED2 KO cells with MEK inhibitors restores sensitivity to imatinib, overcoming resistance phenotypes. In this work, we discovered previously identified pathways (apoptosis, MAP-kinase signalling) and novel pathways that modulate response to imatinib in CML cell lines, such as the implication of the Mediator complex, mRNA processing and protein ubiquitinylation. Targeting these specific genetic lesions with combinational therapy can overcome resistance phenotypes and paves the road for the use of precision oncology
Huguet, Florence. « Étude de l'altération de la réponse aux radiations ionisantes par deux inhibiteurs de tyrosine kinase : le STI571 (Glivec®) et le BIBW 2992 ». Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00574782.
Texte intégralBourgne, Céline. « Approche des mécanismes de résistance des cellules souches leucémiques de leucémie myéloïde chronique aux inhibiteurs de tyrosine kinase ». Thesis, Clermont-Ferrand 1, 2012. http://www.theses.fr/2012CLF1MM10.
Texte intégralThe Tyrosine Kinase Inhibitors (TKI) of BCR-ABL (Imatinib (IMA), Nilotinib (NIL) and dasatinib (DAS)) have revolutionized the treatment of Chronic Myeloid Leukemia (CML). However therapeutic responses remain variable. Moreover, several studies showed that most patients have persistent CD34+ leukemic stem cells (LSCs) resistant to TKI and the origin of disease relapse. Given that the targeted therapy (TKI) should reach malignant cells and that no method was able to assess the amount of TKI in viable target cells, we have developed a process by flow cytometry for TKI quantification in target cells. By using K562 and KCL22 cell lines we showed that cell death at 24hrs was closely related to IMA uptake after one hour of incubation. We then applied our method to primary cells and showed an intracellular level of IMA, NIL and DAS dependent on cell characteristics and heterogeneous from one subject to another (Article 1). Probably because of the heterogeneity of our series, we did not find any correlation between the accumulation of TKI and therapeutic response of CML. Moreover, we used our process to observe a decrease in DAS accumulation in vivo in circulating blasts of a CML patient with acute transformation, in spite of significant DAS uptake, we observed a recurrence of Syk phosphorylation in Y348 that we identified as a potential marker of acutisation, at the same time of disease resistance (Article 2). A major advantage of our process is the possibility to analyze the different cell subsets, including CD34+ CML cells. These cells had a lower (even absent in cells from some patients) level of intracellular TKI compared to mature cells. The clonogenic assays performed in parallel showed a significant correlation with DAS only. Finally, our preliminary results suggest differences between CD34+ cells from blood and those from bone marrow. In conclusion, our process allows evaluating the amount of TKI in viable cell subpopulations. This project will be continued with i) the study of the potential interest of the early evaluation of in vivo intracellular level of TKI (after the fourth dose) and ii) the influence of the microenvironment on CSL resistance to TKI and epigenetics deregulations
Nowak, Frédérique. « Inhibiteurs de protéines tyrosine kinases et transduction : effet d'une tyrphostine sur les récepteurs de classe I et sur la signalisation conduisant à l'activation de la MAP kinase dans des cellules éphithéliales du colon ». Châtenay-Malabry, Ecole centrale de Paris, 1996. http://www.theses.fr/1996ECAP0449.
Texte intégralCharaf, Lucie. « Utilisation de la stratégie iPSC pour la modélisation et l'étude des mécaniques de résistance des cellules souches cancéreuses : exemple de la leucémie myéloïde chronique ». Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0230.
Texte intégralIPSC (induced pluripotent stem cells) offer renewable source of biologically relevant human cells for genetic diseases modelling and therapy, regenerative medicine, pharmacological study and, recently, cancer research. The proof of « cancer stem cell concept » was established in chronic myeloid leukemia (CML) : CML stem cells (CML-SC) are resistant to treatment (tyrosine kinase inhibitors (TKI)). They are involved in residual disease persistence and relapse when treatment is discontinued in the majority of patients. We modelled CML-SC with CML iPSC. We showed, for the first time, that BCR-ABL1 acts as a repressor of key stemness markers (OCT4, NANOG, miR302-367 cluster) via ERK1/2 in human CML iPSC. By blocking BCR–ABL1 activity, TKI increase pluripotency gene expression. Interestingly, a similar pro-stemness effect was observed during CML-SC treatment. By inducing a more primitive stemness phenotype, TKI could promote residual disease and relapse. Interestingly, an increase of stemness gene expression was also observed during TKI treatment of healthy cells (iPSC and hematopoietic stem cells). These data suggest a global TKI pro-stemness effect in other stem cell types
Lebeau, Alexandre. « Conception d’inhibiteurs de l’activité tyrosine kinase basée sur la plasticité conformationnelle : applications aux domaines kinase des protéines Axl, Abl et Src ». Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20250/document.
Texte intégralThe receptor tyrosine kinase Axl was discovered in 1988. Latter on, its involvement in the cancer development was highlighted. Axl is overexpressed in pancreatic cancer and triple-negative breast cancer cell lines. The success of kinase inhibitors (imatinib, erlotinib ...) led us to focus on the design of inhibitors targetting the kinase domain of Axl. As a guide, we modeled the protein-kinase domain in its active and inactive conformations to perform structure-based drug design. The models were then validated by different methods: structural bioinformatics, comparative docking and focused virtual screening. A virtual chemical library was built and docked into Axl models.Then, I synthetized 15 chemical compounds targetting the ‘inactive' conformation of the kinase domain of Axl. However, none were active in an in vitro assay. Then we were interested in the chemistry of 4 and 7-azaindole cores. This work led to the synthesis of 12 ligands among which several showed promising activity against the ‘inactive' conformation of the kinase domains of Abl and Src.Meanwhile, a large-scale screening was published and we used that new data to re-evaluate the modeling of a "DFG-out" inactive conformation of Axl
Leary, Alexandra. « Laboratory and clinical studies of the dual EGFR/HER2 tyrosine kinase inhibitor lapatinib in breast cancer ». Thesis, Institute of Cancer Research (University Of London), 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538329.
Texte intégralDahle-Smith, Åsa. « Qualification of predictive biomarkers for epidermal growth factor receptor tyrosine kinase inhibitor therapy in oesophagogastric carcinoma ». Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231421.
Texte intégralBasbous, Sara. « La voie Rho/ROCK, un nouveau mécanisme d'échappement des cellules leucémiques au contrôle de l'immunité T innée ». Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT1402/document.
Texte intégralCDld-restricted iNKT cells and innate CD8 T cells are believed to play a key role in cancer immune surveillance and are functionally deficient in chronic myeloid leukemia (CML). Herein, we have hypothesized that this defect might originate from BCR-ABL-dependent dysfunctions in myeloid dendritic cells (mDC). Indeed, flow cytometry and confocal microscopy revealed that cell-surface expression of CDld was downregulated in CML mDC, relative to healthy donor (HD) controls. The decreased cell-surface display of CDld could not be ascribed to defective mDC differentiation, as attested by normal expression of HLA-DR and the CD86 maturation marker. On the other hand, reduced membrane expression was not associated with decreased intracytoplasmic levels of CDld or its mRNA transcripts, consistent with intracellular retention. ln vitro treatrnent of CML mDC with the Rho-associated protein Kinase (ROCK) inhibitor Y-27632 partially restored both cell-surface CDld expression and CDld-mediated antigen presentation, while it had no effect on HD mDC. We propose that ROCK, which is most likely activated by the DH-PH domain of BCR-ABL, mediates iNKT-cell immune subversion in CML patients by downregulating CDld expression on CML mDC. Remarkably, both iNKT cells and innate CD8 T cells retumed to nonnal after complete CML remission, a finding consistent with a iN KT cell-dependent generation of innate CD8 T cells, similarly to the observations in mice. Ali in ali, our study supports the possible contribution of iNKT/innate CD8 T cells to tumor surveillance in CML, and reveals the ROCK/mDC axis as a new potential target to restore immune surveillance in CML