Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Injectable in-situ forming hydrogel.

Articles de revues sur le sujet « Injectable in-situ forming hydrogel »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Injectable in-situ forming hydrogel ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chen, Ying, Xiaomin Wang, Yudong Huang, et al. "In Situ-Forming Cellulose/Albumin-Based Injectable Hydrogels for Localized Antitumor Therapy." Polymers 13, no. 23 (2021): 4221. http://dx.doi.org/10.3390/polym13234221.

Texte intégral
Résumé :
Injectable hydrogels, which are formed in situ by changing the external stimuli, have the unique characteristics of easy handling and minimal invasiveness, thus providing the advantage of bypass surgical operation and improving patient compliance. Using external temperature stimuli to realize the sol-to-gel transition when preparing injectable hydrogel is essential since the temperature is stable in vivo and controllable during ex vivo, although the hydrogels obtained possibly have low mechanical strength and stability. In this work, we designed an in situ fast-forming injectable cellulose/alb
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ho, Emily, Anthony Lowman, and Michele Marcolongo. "In situ apatite forming injectable hydrogel." Journal of Biomedical Materials Research Part A 83A, no. 1 (2007): 249–56. http://dx.doi.org/10.1002/jbm.a.31457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Lixuan, Shiyan Dong, Yutong Liu, et al. "Fabrication of Injectable, Porous Hyaluronic Acid Hydrogel Based on an In-Situ Bubble-Forming Hydrogel Entrapment Process." Polymers 12, no. 5 (2020): 1138. http://dx.doi.org/10.3390/polym12051138.

Texte intégral
Résumé :
Injectable hydrogels have been widely applied in the field of regenerative medicine. However, current techniques for injectable hydrogels are facing a challenge when trying to generate a biomimetic, porous architecture that is well-acknowledged to facilitate cell behaviors. In this study, an injectable, interconnected, porous hyaluronic acid (HA) hydrogel based on an in-situ bubble self-generation and entrapment process was developed. Through an amide reaction between HA and cystamine dihydrochloride activated by EDC/NHS, CO2 bubbles were generated and were subsequently entrapped inside the su
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mashaqbeh, Hadeia, Batool Al-Ghzawi, and Fatima BaniAmer. "Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses." Advances in Pharmacological and Pharmaceutical Sciences 2024 (May 27, 2024): 1–19. http://dx.doi.org/10.1155/2024/3869387.

Texte intégral
Résumé :
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid’s structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kwon, Jin Seon, So Mi Yoon, Doo Yeon Kwon, et al. "Injectable in situ-forming hydrogel for cartilage tissue engineering." Journal of Materials Chemistry B 1, no. 26 (2013): 3314. http://dx.doi.org/10.1039/c3tb20105h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kocak, Fatma Z., Abdullah C. S. Talari, Muhammad Yar, and Ihtesham U. Rehman. "In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications." International Journal of Molecular Sciences 21, no. 5 (2020): 1633. http://dx.doi.org/10.3390/ijms21051633.

Texte intégral
Résumé :
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol–gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4
Styles APA, Harvard, Vancouver, ISO, etc.
7

Turabee, Md Hasan, Thavasyappan Thambi, Huu Thuy Trang Duong, Ji Hoon Jeong, and Doo Sung Lee. "A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo." Biomaterials Science 6, no. 3 (2018): 661–71. http://dx.doi.org/10.1039/c7bm00980a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kim, Da Yeon, Hyeon Jin Ju, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Injectable in situ forming hydrogel gene depot to improve the therapeutic effect of STAT3 shRNA." Biomaterials Science 9, no. 12 (2021): 4459–72. http://dx.doi.org/10.1039/d1bm00624j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

King, Jasmine L., Alain Valdivia, Shawn D. Hingtgen, and S. Rahima Benhabbour. "Injectable Tumoricidal Neural Stem Cell-Laden Hydrogel for Treatment of Glioblastoma Multiforme—An In Vivo Safety, Persistence, and Efficacy Study." Pharmaceutics 17, no. 1 (2024): 3. https://doi.org/10.3390/pharmaceutics17010003.

Texte intégral
Résumé :
Background/Objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment. Methods: Herein, we developed a chitosan-based (CS) injectable, biodegradable, in situ forming thermo-responsive hydrogel as a cell delivery vehicle for the treatment of GBM. Tumori
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Yajie, Hong Chen, Tingting Zhang, et al. "Fast-forming BMSC-encapsulating hydrogels through bioorthogonal reaction for osteogenic differentiation." Biomaterials Science 6, no. 10 (2018): 2578–81. http://dx.doi.org/10.1039/c8bm00689j.

Texte intégral
Résumé :
An injectable in situ fast-forming hydrogel was fabricated to encapsulate BMSCs for osteogenic differentiation through the inverse electron demand Diels–Alder click reaction between trans-cyclooctene-modified PEG and tetrazine-modified hyaluronic acid.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Begum, Bushra, Trideva Sastri Koduru, Syeda Noor Madni, et al. "Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel." Gels 10, no. 10 (2024): 649. http://dx.doi.org/10.3390/gels10100649.

Texte intégral
Résumé :
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hyd
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tavakol, Moslem, Ebrahim Vasheghani-Farahani, Mohammad Amin Mohammadifar, and Maryam Dehghan-Niri. "Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels." Journal of Polymer Engineering 39, no. 5 (2019): 442–49. http://dx.doi.org/10.1515/polyeng-2018-0366.

Texte intégral
Résumé :
Abstract In the present study, gamma irradiation was applied to promote the mechanical properties of enzyme- mediated in situ forming hydrogels prepared with tyramine-functionalized gum tragacanth (TA-GT). For this purpose, after gamma irradiation of powder or hydrocolloid solution of gum tragacanth (GT), the physiochemical and rheological properties of GT solution, and resultant hydrogel was investigated. In situ forming hydrogels were prepared via horseradish peroxidase catalyzed coupling reaction of TA-GT in the presence of hydrogen peroxide. Gamma irradiation led to a decrease in GT molecu
Styles APA, Harvard, Vancouver, ISO, etc.
13

Korytkowska-Walach, Anna, Monika Smiga-Matuszowicz, and Jan Lukaszczyk. "Polymeric in situ forming systems for biomedical applications. Part II. Injectable hydrogel systems." Polimery 60, no. 07/08 (2015): 435–47. http://dx.doi.org/10.14314/polimery.2015.435.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

K., C. Anaswaraashok* R. S. Anusree Dr. Jisha mohanan. "Injectable In-Situ Forming Hydrogels: A Versatile Depot Platform for Localized and Postoperative Cancer Therapy." International Journal of Pharmaceutical Sciences 3, no. 5 (2025): 1785–803. https://doi.org/10.5281/zenodo.15383345.

Texte intégral
Résumé :
Cancer remains one of the most critical global health challenges, contributing to millions of deaths each year despite advancements in diagnostic and therapeutic strategies. Conventional treatment modalities such as chemotherapy and radiotherapy often lead to significant systemic toxicity, poor bioavailability, and nonspecific drug distribution, limiting their therapeutic efficiency. To overcome these limitations, injectable in-situ forming hydrogel depots have emerged as innovative and promising localized drug delivery platforms. These hydrophilic, three-dimensional polymeric networks can tra
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Fei, Jinlin He, Mingzu Zhang та Peihong Ni. "A pH-sensitive and biodegradable supramolecular hydrogel constructed from a PEGylated polyphosphoester-doxorubicin prodrug and α-cyclodextrin". Polymer Chemistry 6, № 28 (2015): 5009–14. http://dx.doi.org/10.1039/c5py00620a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Flegeau, Killian, Olivier Gauthier, Gildas Rethore, et al. "Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits." Biomaterials Science 9, no. 16 (2021): 5640–51. http://dx.doi.org/10.1039/d1bm00403d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Brijesh, Kumar, K. Singh Amit, K. Prasad Raj, S. Singh Chandra, and Dwivedi Vivek. "Formulation and Evaluation of an Injectable In-Situ Forming Hydrogel of Dacarbazine as Anticancer Agent." Pharmaceutical and Chemical Journal 3, no. 1 (2016): 100–108. https://doi.org/10.5281/zenodo.13739933.

Texte intégral
Résumé :
Cancer is currently one of the leading causes of death worldwide. Anticancer drugs can be given either by the conventional drug delivery systems including solid dosage forms, Injectable dosage forms and infusions or using the Novel drug delivery systems including targeted drug delivery dosage forms such as liposomes and nanoparticles etc.The objective of present investigation is to formulate and evaluate the <em>In situ</em> forming mainly Temperature induced and pH induced gelling Injectable hydrogels of an anticancer drug Dacarbazine using delivery vehicle Chitosan.All selected temperature i
Styles APA, Harvard, Vancouver, ISO, etc.
18

Goder Orbach, Daniella, Ilana Roitman, Geffen Coster Kimhi, and Meital Zilberman. "Formulation-Property Effects in Novel Injectable and Resilient Natural Polymer-Based Hydrogels for Soft Tissue Regeneration." Polymers 16, no. 20 (2024): 2879. http://dx.doi.org/10.3390/polym16202879.

Texte intégral
Résumé :
The development of injectable hydrogels for soft tissue regeneration has gained significant attention due to their minimally invasive application and ability to conform precisely to the shape of irregular tissue cavities. This study presents a novel injectable porous scaffold based on natural polymers that undergoes in situ crosslinking, forming a highly resilient hydrogel with tailorable mechanical and physical properties to meet the specific demands of soft tissue repair. By adjusting the formulation, we achieved a range of stiffness values that closely mimic the mechanical characteristics o
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kim, Hea Kyung, Woo Sun Shim, Sung Eun Kim, et al. "Injectable In Situ–Forming pH/Thermo-Sensitive Hydrogel for Bone Tissue Engineering." Tissue Engineering Part A 15, no. 4 (2009): 923–33. http://dx.doi.org/10.1089/ten.tea.2007.0407.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yang, Jeong-A., Junseok Yeom, Byung Woo Hwang, Allan S. Hoffman, and Sei Kwang Hahn. "In situ-forming injectable hydrogels for regenerative medicine." Progress in Polymer Science 39, no. 12 (2014): 1973–86. http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Young, Stuart A., Hossein Riahinezhad, and Brian G. Amsden. "In situ-forming, mechanically resilient hydrogels for cell delivery." Journal of Materials Chemistry B 7, no. 38 (2019): 5742–61. http://dx.doi.org/10.1039/c9tb01398a.

Texte intégral
Résumé :
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Yan, Shifeng, Xin Zhang, Kunxi Zhang, et al. "Injectable in situ forming poly(l-glutamic acid) hydrogels for cartilage tissue engineering." Journal of Materials Chemistry B 4, no. 5 (2016): 947–61. http://dx.doi.org/10.1039/c5tb01488c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Phan, V. H. Giang, Mohanapriya Murugesan, Panchanathan Manivasagan, et al. "Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment." Pharmaceutics 14, no. 4 (2022): 709. http://dx.doi.org/10.3390/pharmaceutics14040709.

Texte intégral
Résumé :
Despite the potential of hydrogel-based localized cancer therapies, their efficacy can be limited by cancer recurrence. Therefore, it is of great significance to develop a hydrogel system that can provoke robust and durable immune response in the human body. This study has developed an injectable protein-polymer-based porous hydrogel network composed of lysozyme and poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) (Lys-PCLA) bioconjugate for the active recruitment dendritic cells (DCs). The Lys-PCLA bioconjugates are prepared using thiol-ene react
Styles APA, Harvard, Vancouver, ISO, etc.
24

Andrgie, Abegaz Tizazu, Haile Fentahun Darge, Tefera Worku Mekonnen, et al. "Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing." Polymers 12, no. 11 (2020): 2619. http://dx.doi.org/10.3390/polym12112619.

Texte intégral
Résumé :
Hydrogels have been investigated as ideal biomaterials for wound treatment owing to their ability to form a highly moist environment which accelerates cell migration and tissue regeneration for prompt wound healing. They can also be used as a drug carrier for local delivery, and are able to activate immune cells to enhance wound healing. Here, we developed heparin-conjugated poly(N-isopropylacrylamide), an injectable, in situ gel-forming polymer, and evaluated its use in wound healing. Ibuprofen was encapsulated into the hydrogel to help reduce pain and excessive inflammation during healing. I
Styles APA, Harvard, Vancouver, ISO, etc.
25

Abdelghafour, Mohamed M., Ágota Deák, Tamás Kiss, et al. "Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone." Pharmaceutics 14, no. 12 (2022): 2723. http://dx.doi.org/10.3390/pharmaceutics14122723.

Texte intégral
Résumé :
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7–45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak app
Styles APA, Harvard, Vancouver, ISO, etc.
26

Amirthalingam, Sivashanmugam, Ashvin Ramesh, Seunghun S. Lee, Nathaniel S. Hwang, and Rangasamy Jayakumar. "Injectable in Situ Shape-Forming Osteogenic Nanocomposite Hydrogel for Regenerating Irregular Bone Defects." ACS Applied Bio Materials 1, no. 4 (2018): 1037–46. http://dx.doi.org/10.1021/acsabm.8b00225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Liu, Hui, Jia Liu, Chao Qi, et al. "Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture." Acta Biomaterialia 35 (April 2016): 228–37. http://dx.doi.org/10.1016/j.actbio.2016.02.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shin, Gi Ru, Hee Eun Kim, Jae Ho Kim, Sangdun Choi, and Moon Suk Kim. "Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment." Pharmaceutics 13, no. 11 (2021): 1953. http://dx.doi.org/10.3390/pharmaceutics13111953.

Texte intégral
Résumé :
Chemotherapy has been linked to a variety of severe side effects, and the bioavailability of current chemotherapeutic agents is generally low, which decreases their effectiveness. Therefore, there is an ongoing effort to develop drug delivery systems to increase the bioavailability of these agents and minimize their side effects. Among these, intratumoral injections using in situ-forming hydrogels can improve drugs’ bioavailability and minimize drugs’ accumulation in non-target organs or tissues. This review describes different types of injectable in situ-forming hydrogels and their intratumor
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kocak, Fatma Z., Muhammad Yar, and Ihtesham U. Rehman. "Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance." International Journal of Molecular Sciences 23, no. 10 (2022): 5370. http://dx.doi.org/10.3390/ijms23105370.

Texte intégral
Résumé :
The investigation of natural bioactive injectable composites to induce angiogenesis during bone regeneration has been a part of recent minimally invasive regenerative medicine strategies. Our previous study involved the development of in situ-forming injectable composite hydrogels (Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology, injectability, and gelation at 37 °C, as well as promising pro-angiogenic abilities. In the current study, these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy to enhance thei
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ma, Zhenzhen, Cheng Tao, Lin Sun, et al. "In Situ Forming Injectable Hydrogel For Encapsulation Of Nanoiguratimod And Sustained Release Of Therapeutics." International Journal of Nanomedicine Volume 14 (November 2019): 8725–38. http://dx.doi.org/10.2147/ijn.s214507.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ding, Xiaoya, Ye Wang, Jiaying Liu, et al. "Injectable In Situ Forming Double-Network Hydrogel To Enhance Transplanted Cell Viability and Retention." Chemistry of Materials 33, no. 15 (2021): 5885–95. http://dx.doi.org/10.1021/acs.chemmater.1c00635.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kim, Da, Yoon Kim, Hai Lee, Shin Moon, Seung-Yup Ku, and Moon Kim. "In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel." Materials 6, no. 7 (2013): 2978–88. http://dx.doi.org/10.3390/ma6072978.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Li, Fei, Jinlin He, Mingzu Zhang, Kam Chiu Tam та Peihong Ni. "Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery". RSC Advances 5, № 67 (2015): 54658–66. http://dx.doi.org/10.1039/c5ra06156c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mohammadi, Marzieh, Malihe Karimi, Bizhan Malaekeh-Nikouei, Mohammad Torkashvand, and Mona Alibolandi. "Hybrid in situ- forming injectable hydrogels for local cancer therapy." International Journal of Pharmaceutics 616 (March 2022): 121534. http://dx.doi.org/10.1016/j.ijpharm.2022.121534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Songkroh, Titima, Hongguo Xie, Weiting Yu, et al. "Injectable in situ forming chitosan-based hydrogels for curcumin delivery." Macromolecular Research 23, no. 1 (2015): 53–59. http://dx.doi.org/10.1007/s13233-015-3006-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chouhan, Dimple, Tshewuzo-u. Lohe, Pavan Kumar Samudrala, and Biman B. Mandal. "In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds." Advanced Healthcare Materials 7, no. 24 (2018): 1801092. http://dx.doi.org/10.1002/adhm.201801092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Nguyen, Hy D., Munsik Jang, Hai V. Ngo, et al. "Physicochemical Properties, Drug Release and In Situ Depot-Forming Behaviors of Alginate Hydrogel Containing Poorly Water-Soluble Aripiprazole." Gels 10, no. 12 (2024): 781. https://doi.org/10.3390/gels10120781.

Texte intégral
Résumé :
The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily
Styles APA, Harvard, Vancouver, ISO, etc.
38

Naderi-Meshkin, Hojjat, Kristin Andreas, Maryam M. Matin, et al. "Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering." Cell Biology International 38, no. 1 (2013): 72–84. http://dx.doi.org/10.1002/cbin.10181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Dutta, Kingshuk, Ritam Das, Jing Ling, et al. "In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules." ACS Omega 5, no. 28 (2020): 17531–42. http://dx.doi.org/10.1021/acsomega.0c02009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Tran, Ngoc Quyen, Yoon Ki Joung, Eugene Lih, Kyung Min Park, and Ki Dong Park. "RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds." Macromolecular Research 19, no. 3 (2011): 300–306. http://dx.doi.org/10.1007/s13233-011-0309-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Dimatteo, Robert, Nicole J. Darling, and Tatiana Segura. "In situ forming injectable hydrogels for drug delivery and wound repair." Advanced Drug Delivery Reviews 127 (March 2018): 167–84. http://dx.doi.org/10.1016/j.addr.2018.03.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Fiorica, Calogero, Fabio Salvatore Palumbo, Giovanna Pitarresi, Alessandro Gulino, Stefano Agnello, and Gaetano Giammona. "Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair." RSC Advances 5, no. 25 (2015): 19715–23. http://dx.doi.org/10.1039/c4ra16411c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Dehghan-Baniani, Dorsa, Yin Chen, Dong Wang, Reza Bagheri, Atefeh Solouk, and Hongkai Wu. "Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering." Colloids and Surfaces B: Biointerfaces 192 (August 2020): 111059. http://dx.doi.org/10.1016/j.colsurfb.2020.111059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kwon, Jin Seon, Sung Won Kim, Doo Yeon Kwon, et al. "In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel." Biomaterials 35, no. 20 (2014): 5337–46. http://dx.doi.org/10.1016/j.biomaterials.2014.03.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lee, Yunki, Jin Woo Bae, Jin Woo Lee, Wonhee Suh, and Ki Dong Park. "Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy." J. Mater. Chem. B 2, no. 44 (2014): 7712–18. http://dx.doi.org/10.1039/c4tb01111b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Marques, Ana Camila, Paulo C. Costa, Sérgia Velho, and Maria Helena Amaral. "Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles." Gels 10, no. 5 (2024): 307. http://dx.doi.org/10.3390/gels10050307.

Texte intégral
Résumé :
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle–hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrog
Styles APA, Harvard, Vancouver, ISO, etc.
47

He, Jinlin, Mingzu Zhang, and Peihong Ni. "Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers." Soft Matter 8, no. 22 (2012): 6033. http://dx.doi.org/10.1039/c2sm25274k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yan, Shifeng, Taotao Wang, Xing Li, et al. "Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan." RSC Advances 7, no. 28 (2017): 17005–19. http://dx.doi.org/10.1039/c7ra01864a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Yu, Yi Sun, Xia Yang, Jöns Hilborn, Arend Heerschap, and Dmitri A. Ossipov. "Injectable In Situ Forming Hybrid Iron Oxide-Hyaluronic Acid Hydrogel for Magnetic Resonance Imaging and Drug Delivery." Macromolecular Bioscience 14, no. 9 (2014): 1249–59. http://dx.doi.org/10.1002/mabi.201400117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Khan, Samiullah, Muhammad Usman Minhas, Muhammad Tahir Aqeel, et al. "RETRACTED: Khan et al. Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hydrogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation. Pharmaceutics 2022, 14, 1050." Pharmaceutics 16, no. 1 (2024): 149. http://dx.doi.org/10.3390/pharmaceutics16010149.

Texte intégral
Résumé :
The journal retracts the article, “Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hy-drogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation” [...]
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!