Articles de revues sur le sujet « Interactions de surface »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Interactions de surface.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Interactions de surface ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Turov, V. V., V. M. Gun’ko, T. V. Krupskaya, I. S. Protsak, L. S. Andriyko, A. I. Marinin, A. P. Golovan, N. V. Yelagina et N. T. Kartel. « Interphase interactions of hydrophobic powders based on methilsilica in the water environment ». Surface 12(27) (30 décembre 2020) : 53–99. http://dx.doi.org/10.15407/surface.2020.12.053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Using modern physicochemical research methods and quantum chemical modeling, the surface structure, morphological and adsorption characteristics, phase transitions in heterogeneous systems based on methylsilica and its mixtures with hydrophilic silica were studied. It is established that at certain concentrations of interfacial water, hydrophobic silica or their composites with hydrophilic silica form thermodynamically unstable systems in which energy dissipation can be carried out under the influence of external factors: increasing water concentration, mechanical loads and adsorption of air by hydrophobic component. When comparing the binding energies of water in wet powders of wettind-drying samples A-300 and AM-1, which had close values of bulk density (1 g/cm3) and humidity (1 g/g), close to 8 J/g. However, the hydration process of hydrophobic silica is accompanied by a decrease in entropy and the transition of the adsorbent-water system to a thermodynamically nonequilibrium state, which is easily fixed on the dependences of interfacial energy (S) on the amount of water in the system (h). It turned out that for pure AM-1 the interfacial energy of water increases in proportion to its amount in the interparticle gaps only in the case when h < 1 g/g. With more water, the binding energy decreases abruptly, indicating the transition of the system to a more stable state, which is characterized by the consolidation of clusters of adsorbed water and even the formation of a bulk phase of water. Probably there is a partial "collapse" of the interparticle gaps of hydrophobic particles AM-1 and the release of thermodynamically excess water. For mixtures of hydrophobic and hydrophilic silica, the maximum binding of water is shifted towards greater hydration. At AM1/A-300 = 1/1 the maximum is observed at h = 3g/g, and in the case of AM1/A-300 = 1/2 it is not reached even at h = 4 g/g. The study of the rheological properties of composite systems has shown that under the action of mechanical loads, the viscosity of systems decreases by almost an order of magnitude. However, after withstanding the load and then reducing the load to zero, the viscosity of the system increases again and becomes significantly higher than at the beginning of the study. That is, the obtained materials have high thixotropic properties. Thus, a wet powder that has all the characteristics of a solid after a slight mechanical impact is easily converted into a concentrated suspension with obvious signs of liquid.
2

Hunt, John A., et Molly Shoichet. « Biomaterials : surface interactions ». Current Opinion in Solid State and Materials Science 5, no 2-3 (avril 2001) : 161–62. http://dx.doi.org/10.1016/s1359-0286(01)00012-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lafleur, Trevor, Julian Schulze et Zoltan Donkó. « Plasma-surface interactions ». Plasma Sources Science and Technology 28, no 4 (16 avril 2019) : 040201. http://dx.doi.org/10.1088/1361-6595/ab1380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

A, J. B. « Molecule surface interactions ». Journal of Molecular Structure 249, no 2-4 (septembre 1991) : 391. http://dx.doi.org/10.1016/0022-2860(91)85082-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Goeckner, M. J., C. T. Nelson, S. P. Sant, A. K. Jindal, E. A. Joseph, B. S. Zhou, G. Padron-Wells, B. Jarvis, R. Pierce et L. J. Overzet. « Plasma-surface interactions ». Journal of Physics : Conference Series 133 (1 octobre 2008) : 012010. http://dx.doi.org/10.1088/1742-6596/133/1/012010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Erath, Johann, Jiaxi Cui, Jasmin Schmid, Michael Kappl, Aránzazu del Campo et Andreas Fery. « Phototunable Surface Interactions ». Langmuir 29, no 39 (19 septembre 2013) : 12138–44. http://dx.doi.org/10.1021/la4021349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tuson, Hannah H., et Douglas B. Weibel. « Bacteria–surface interactions ». Soft Matter 9, no 17 (2013) : 4368. http://dx.doi.org/10.1039/c3sm27705d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Annich, G. M., B. Ashton, S. I. Merz, D. O. Brant et R. H. Bartlett. « PLATELET/SURFACE INTERACTIONS ». ASAIO Journal 46, no 2 (mars 2000) : 234. http://dx.doi.org/10.1097/00002480-200003000-00332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chang, J. P., et J. W. Coburn. « Plasma–surface interactions ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 21, no 5 (septembre 2003) : S145—S151. http://dx.doi.org/10.1116/1.1600452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Winkler, A. « Gas-surface interactions ». Vacuum 46, no 8-10 (août 1995) : 1241–42. http://dx.doi.org/10.1016/0042-207x(95)00151-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Clinton, William L., et Sipra Pal. « Ion-surface interactions ». Surface Science 226, no 1-2 (février 1990) : 89–92. http://dx.doi.org/10.1016/0039-6028(90)90156-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Weinberg, W. Henry. « Molecule surface interactions ». Journal of Colloid and Interface Science 137, no 1 (juin 1990) : 312. http://dx.doi.org/10.1016/0021-9797(90)90071-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ahmadi, Ahmad, Rhodri Wyn Evans et Gary Attard. « Anion—surface interactions ». Journal of Electroanalytical Chemistry 350, no 1-2 (mai 1993) : 279–95. http://dx.doi.org/10.1016/0022-0728(93)80211-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ahmadi, Ahmad, Emma Bracey, Rhodri Wyn Evans et Gary Attard. « Anion-surface interactions ». Journal of Electroanalytical Chemistry 350, no 1-2 (mai 1993) : 297–316. http://dx.doi.org/10.1016/0022-0728(93)80212-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kazakova, O. O. « Quantum-chemical investigation of interactions in supramolecular systems : cholesterol - bile acids - silica in aqueous solutions ». Surface 13(28) (30 décembre 2021) : 39–46. http://dx.doi.org/10.15407/surface.2021.13.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Hypercholesterolemia significantly increases the risk of myocardial infarction associated with COVID-19. Along with pharmacological treatment, the possibility of the excretion of excess cholesterol from an organism by adsorption is also of great interest. The interaction of cholesterol with the surface of partially hydrophobized silica in aqueous solutions of bile acids was investigated by the PM7 method using the COSMO (COnductor-like Screening MOdel) solvation model. The distribution of electrostatic and hydrophobic potentials of molecules and complexes was calculated. The values of free Gibbs energy adsorption of bile acids on the surface of silica correlate with the distribution coefficients in the n-octanol-water system. The energy of interaction of cholesterol with bile acids affects its adsorption on silica. The stronger the bond of cholesterol with the molecules of bile acids, the less it is released from the primary micelles in solution and adsorbed on the surface.
16

Severn, Kathryn Anne, Paul Richard Fleming et Neil Dixon. « Science of synthetic turf surfaces : Player–surface interactions ». Sports Technology 3, no 1 (février 2010) : 13–25. http://dx.doi.org/10.1080/19346190.2010.504279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

USAMI, Seiji. « Gas-solid surface interactions. » SHINKU 30, no 12 (1987) : 946–48. http://dx.doi.org/10.3131/jvsj.30.946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Claesson, P. M. « Measurements of surface interactions ». Colloids and Surfaces A : Physicochemical and Engineering Aspects 123-124 (mai 1997) : 339–40. http://dx.doi.org/10.1016/s0927-7757(96)03805-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Steigmann, D. J., et R. W. Ogden. « Elastic surface—substrate interactions ». Proceedings of the Royal Society of London. Series A : Mathematical, Physical and Engineering Sciences 455, no 1982 (8 février 1999) : 437–74. http://dx.doi.org/10.1098/rspa.1999.0320.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

McKeown-Longo, Paula J. « Fibronectin-Cell Surface Interactions ». Clinical Infectious Diseases 9, Supplement_4 (1 juillet 1987) : S322—S334. http://dx.doi.org/10.1093/clinids/9.supplement_4.s322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Komerska, R., et C. Ware. « Haptic state surface interactions ». IEEE Computer Graphics and Applications 24, no 6 (novembre 2004) : 52–59. http://dx.doi.org/10.1109/mcg.2004.53.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bandaru, Prabhakar, et Eli Yablonovitch. « Semiconductor Surface-Molecule Interactions ». Journal of The Electrochemical Society 149, no 11 (2002) : G599. http://dx.doi.org/10.1149/1.1509461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Marmur, Abraham. « Tip-surface capillary interactions ». Langmuir 9, no 7 (juillet 1993) : 1922–26. http://dx.doi.org/10.1021/la00031a047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Claesson, Per M., Evgeni Poptoshev, Eva Blomberg et Andra Dedinaite. « Polyelectrolyte-mediated surface interactions ». Advances in Colloid and Interface Science 114-115 (juin 2005) : 173–87. http://dx.doi.org/10.1016/j.cis.2004.09.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Harshman, Dale R. « Muon/muonium surface interactions ». Hyperfine Interactions 32, no 1-4 (décembre 1986) : 847–63. http://dx.doi.org/10.1007/bf02394994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Salma, Khanam, et Z. J. Ding. « Surface Boundary Effect in Electron-Solid Interactions ». Solid State Phenomena 121-123 (mars 2007) : 1175–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.1175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Electrons impinging or escaping from a solid surface undergo surface electronic excitations which are competitive in nature to other electron-solid interaction channels. The detailed information about electron inelastic scattering probability for surface excitations at solid surface is also important in reflection electron energy loss spectroscopy. A self energy formalism based on quantum mechanical treatment of interaction of electrons with a semi-infinite medium, which uses the optical dielectric function is considered to study surface boundary effect for planar surfaces of Cu and Ni for various conditions of electron-solid interactions. The total surface excitation probability of an electron while crossing the surface boundary once is numerically computed by integrating surface term of spatial and angular dependent differential inelastic cross sections over energy loss and distance from the surface. It is found that surface effect is prominent for low energy electrons and large oblique angles with respect to surface normal and confined to the close vicinity of surface boundary.
27

Díaz Compañy, A., G. Brizuela et S. Simonetti. « Study of Materials for Drugs Delivery : cis-[PtCl2(NH3)2] Hydrolysis on Functionalized SiO2(100) Surfaces ». Journal of Solid State Physics 2013 (22 décembre 2013) : 1–10. http://dx.doi.org/10.1155/2013/363209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The hydrolysis of the cis-platin drug on a SiO2(100) hydrated surface was investigated by computational modeling. The cisplatin molecule presents weak interactions with the neighbouring OH groups of the hydrated surface. The cisplatin hydrolysis is not favourable on the SiO2(100) surface. Consequently, the adsorption properties of SiO2(100) are improved considering the surface's modification with K, Mg, or NH2 functional species. In general, the system is more stable and the molecule-surface distance is reduced when cisplatin is adsorbed on the promoted surfaces. The hydrolysis is a favourable process on the SiO2(100) functionalized surfaces. The cisplatin hydrolysis is most favoured when the surface is functionalized with the NH2 specie. The electron density exchange plays a main role in the adsorption process. cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+ are adsorbed on the functionalized surface via Cl–N and Cl–Si interactions, while the cis-[Pt(NH3)2]2+ complex is adsorbed through Pt–O, Pt–Si, and Pt–H interactions. After adsorption, the strength of the N–Si, Si–O, and N–H superficial bonds of the functionalized SiO2(100) changes favouring the interaction between the molecule and their complexes with the surface.
28

Gillan, M. J., I. J. Ford et C. F. Clement. « Molecule - surface interactions : theory in surface science ». Journal of Aerosol Science 29 (septembre 1998) : S643—S644. http://dx.doi.org/10.1016/s0021-8502(98)00515-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Yuan, Lin, Qian Yu, Dan Li et Hong Chen. « Surface Modification to Control Protein/Surface Interactions ». Macromolecular Bioscience 11, no 8 (17 février 2011) : 1031–40. http://dx.doi.org/10.1002/mabi.201000464.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lungu, Claudiu N., Melinda E. Füstös, Ireneusz P. Grudziński, Gabriel Olteanu et Mihai V. Putz. « Protein Interaction with Dendrimer Monolayers : Energy and Surface Topology ». Symmetry 12, no 4 (17 avril 2020) : 641. http://dx.doi.org/10.3390/sym12040641.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Protein interaction with polymers layers is a keystone in designing bio-nano devices. Polyamidoamines (PAMAMs) are well-known polymers. Zero aromatic core dendrimers (ZAC) are molecules with no proven toxic effect in cultured cells. When coating nanodevices with enzymatic systems, active sites are disturbed by an interaction with the biosystem surface. Computational methods were used in order to simulate, characterize, and quantify protein–polymer interaction. Protein corona, i.e., surface proteins disposed on a viral membrane or nanodevice outer surface, are crucial in interactions with a potential pharmacological target or receptor. Corona symmetry has been observed in the Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As a protein alpha 1 antitrypsin’s a crystallographic structure was chosen. Protein–mono dendrimer layer systems were generated using in silico methods in order to simulate their interaction. Interactions were quantified using topological and quantum mechanical strategies. Results showed that PAMAM and ZAC interact differently with alpha 1 antitrypsin. Energy and topological surfaces of protein vary accordingly with the dendrimer monolayer. Topological surfaces have a higher sensibility in describing the interactions.
31

Giussani, Lara, Gloria Tabacchi, Enrica Gianotti, Salvatore Coluccia et Ettore Fois. « Disentangling protein–silica interactions ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 370, no 1963 (28 mars 2012) : 1463–77. http://dx.doi.org/10.1098/rsta.2011.0267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
We present the results of modelling studies aimed at the understanding of the interaction of a 7 nm sized water droplet containing a negatively charged globular protein with flat silica surfaces. We show how the droplet interaction with the surface depends on the electrostatic surface charge, and that adhesion of the droplet occurs when the surface is negatively charged as well. The key role of water and of the charge-balancing counter ions in mediating the surface-protein adhesion is highlighted. The relevance of the present results with respect to the production of bioinorganic hybrids via encapsulation of proteins inside mesoporous silica materials is discussed.
32

TSONG, TIEN T., et CHONG-LIN CHEN. « IMPURITY ADSORPTION INDUCED SURFACE CHARGE-DENSITY OSCILLATION AND INDIRECT ATOMIC INTERACTIONS ». Modern Physics Letters B 04, no 12 (10 juillet 1990) : 775–82. http://dx.doi.org/10.1142/s0217984990000957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Neon field ion image spots of Ta impurities, deposited on the Ir (100) surface, show a halo-ring structure. This image structure is most probably produced by the impurity adsorption induced oscillatory electronic charge-density distribution at the surface. The oscillatory electronic charge-density modulation is the cause of electronic indirect interactions of atoms in alloys and on metal surfaces. Manifestations of these interactions can be found in the compositional variation in the near surface layers of alloys in surface segregation, and in the pair-interaction of adsorbed atoms.
33

Wang, Meng-Jiao, Siegfried Wolff et Jean-Baptiste Donnet. « Filler-Elastomer Interactions. Part I : Silica Surface Energies and Interactions with Model Compounds ». Rubber Chemistry and Technology 64, no 4 (1 septembre 1991) : 559–76. http://dx.doi.org/10.5254/1.3538573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract Inverse gas-solid chromatography, operated at infinite dilution, has been used to assess the surface energies of silicas, both fumed and precipitated. The dispersive components of the surface free energies of the silicas were calculated from the free energies of adsorption, corresponding to the —CH2— group, obtained from n-alkane adsorption. The specific components of the surface energies were evaluated separately by comparison of the free energies of adsorption of polar probes with those of n-alkanes, based on the surface areas covered by the probe molecules. The results indicate that while the dispersive components of silica surface energies is somewhat higher for the fumed silicas, the specific components are much higher for precipitated silicas, probably resulting from the higher silanol concentration on their surfaces. Moreover, the interaction able to take place between rubber matrix and the silicas are also estimated chromatographically from the adsorptions of low-molecular-weight analogs of elastomers. The free energies and enthalpies indicate that the interactions of functional groups with the fillers decrease in the order of nitrile, phenyl ring, double bond. The saturated rubber analogs show lower interactions with silicas. The lowest interactions of iso-alkanes imply poor interactions between butyl rubber and the fillers. As expected, the experimental data reflect an attenuation of polymer-silica interactions with decreasing content of functional groups and degree of unsaturation in NR, BR, SBR, and NBR.
34

Taylor, Christopher G. P., Jennifer S. Train et Michael D. Ward. « Interactions of Small-Molecule Guests with Interior and Exterior Surfaces of a Coordination Cage Host ». Chemistry 2, no 2 (2 juin 2020) : 510–24. http://dx.doi.org/10.3390/chemistry2020031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Coordination cages are well-known to act as molecular containers that can bind small-molecule guests in their cavity. Such cavity binding is associated with interactions of the guests with the surrounding set of surfaces that define the cavity; a guest that is a good fit for the cavity will have many favourable interactions with the interior surfaces of the host. As cages have exterior as well as interior surfaces, possibilities also exist for ‘guests’ that are not well-bound in the cavity to interact with the exterior surface of the cage where spatial constraints are fewer. In this paper, we report a combined solid-state and solution study using an octanuclear cubic M8L12 coordination cage which illustrates the occurrence of both types of interaction. Firstly, crystallographic studies show that a range of guests bind inside the cavity (either singly or in stacked pairs) and/or interact with the cage exterior surface, depending on their size. Secondly, fluorescence titrations in aqueous solution show how some flexible aromatic disulfides show two separate types of interaction with the cage, having different spectroscopic consequences; we ascribe this to separate interactions with the exterior surface and the interior surface of the host cage with the former having a higher binding constant. Overall, it is clear that the idea of host/guest interactions in molecular containers needs to take more account of external surface interactions as well as the obvious cavity-based binding.
35

Mateos, Helena, Alessandra Valentini, Francesco Lopez et Gerardo Palazzo. « Surfactant Interactions with Protein-Coated Surfaces : Comparison between Colloidal and Macroscopically Flat Surfaces ». Biomimetics 5, no 3 (1 juillet 2020) : 31. http://dx.doi.org/10.3390/biomimetics5030031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Surface interactions with polymers or proteins are extensively studied in a range of industrial and biomedical applications to control surface modification, cleaning, or biofilm formation. In this study we compare surfactant interactions with protein-coated silica surfaces differing in the degree of curvature (macroscopically flat and colloidal nanometric spheres). The interaction with a flat surface was probed by means of surface plasmon resonance (SPR) while dynamic light scattering (DLS) was used to study the interaction with colloidal SiO2 (radius 15 nm). First, the adsorption of bovine serum albumin (BSA) with both SiO2 surfaces to create a monolayer of coating protein was studied. Subsequently, the interaction of these BSA-coated surfaces with a non-ionic surfactant (a decanol ethoxylated with an average number of eight ethoxy groups) was investigated. A fair comparison between the results obtained by these two techniques on different geometries required the correction of SPR data for bound water and DLS results for particle curvature. Thus, the treated data have excellent quantitative agreement independently of the geometry of the surface suggesting the formation of multilayers of C10PEG over the protein coating. The results also show a marked different affinity of the surfactant towards BSA when the protein is deposited on a flat surface or individually dissolved in solution.
36

Hellwig, Maren, Martin Köppen, Albert Hiller, Hans Koslowski, Andrey Litnovsky, Klaus Schmid, Christian Schwab et Roger De Souza. « Impact of Surface Roughness on Ion-Surface Interactions Studied with Energetic Carbon Ions 13C+ on Tungsten Surfaces ». Condensed Matter 4, no 1 (5 mars 2019) : 29. http://dx.doi.org/10.3390/condmat4010029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The effect of surface roughness on angular distributions of reflected and physically sputtered particles is investigated by ultra-high vacuum (UHV) ion-surface interaction experiments. For this purpose, a smooth (R a = 5.9 nm) and a rough (R a = 20.5 nm) tungsten (W) surface were bombarded with carbon ions 13C+ under incidence angles of 30 ∘ and 80 ∘ . Reflected and sputtered particles were collected on foils to measure the resulting angular distribution as a function of surface morphology. For the qualitative and quantitative analysis, secondary ion mass spectrometry (SIMS) and nuclear reaction analysis (NRA) were performed. Simulations of ion-surface interactions were carried out with the SDTrimSP (Static Dynamic Transport of Ions in Matter Sputtering) code. For rough surfaces, a special routine was derived and implemented. Experimental as well as calculated results prove a significant impact of surface roughness on the angular distribution of reflected and sputtered particles. It is demonstrated that the effective sticking of C on W is a function of the angle of incidence and surface morphology. It is found that the predominant ion-surface interaction process changes with fluence.
37

Douglas, Jack F. « How does surface roughness affect polymer-surface interactions ? » Macromolecules 22, no 9 (septembre 1989) : 3707–16. http://dx.doi.org/10.1021/ma00199a035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kurnik, Martin, Gabriel Ortega, Philippe Dauphin-Ducharme, Hui Li, Amanda Caceres et Kevin W. Plaxco. « Quantitative measurements of protein−surface interaction thermodynamics ». Proceedings of the National Academy of Sciences 115, no 33 (30 juillet 2018) : 8352–57. http://dx.doi.org/10.1073/pnas.1800287115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Whereas proteins generally remain stable upon interaction with biological surfaces, they frequently unfold on and adhere to artificial surfaces. Understanding the physicochemical origins of this discrepancy would facilitate development of protein-based sensors and other technologies that require surfaces that do not compromise protein structure and function. To date, however, only a small number of such artificial surfaces have been reported, and the physics of why these surfaces support functional biomolecules while others do not has not been established. Thus motivated, we have developed an electrochemical approach to determining the folding free energy of proteins site-specifically attached to chemically well-defined, macroscopic surfaces. Comparison with the folding free energies seen in bulk solution then provides a quantitative measure of the extent to which surface interactions alter protein stability. As proof-of-principle, we have characterized the FynSH3 domain site-specifically attached to a hydroxyl-coated surface. Upon guanidinium chloride denaturation, the protein unfolds in a reversible, two-state manner with a free energy within 2 kJ/mol of the value seen in bulk solution. Assuming that excluded volume effects stabilize surface-attached proteins, this observation suggests there are countervening destabilizing interactions with the surface that, under these conditions, are similar in magnitude. Our technique constitutes an unprecedented experimental tool with which to answer long-standing questions regarding the molecular-scale origins of protein−surface interactions and to facilitate rational optimization of surface biocompatibility.
39

Jensen, K. O., et A. B. Walker. « Positron Transport and Surface Interactions ». Materials Science Forum 105-110 (janvier 1992) : 317–24. http://dx.doi.org/10.4028/www.scientific.net/msf.105-110.317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Senden, Tim J. « Force microscopy and surface interactions ». Current Opinion in Colloid & ; Interface Science 6, no 2 (mai 2001) : 95–101. http://dx.doi.org/10.1016/s1359-0294(01)00067-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Bastasz, R., et W. Eckstein. « Plasma–surface interactions on liquids ». Journal of Nuclear Materials 290-293 (mars 2001) : 19–24. http://dx.doi.org/10.1016/s0022-3115(00)00557-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

D’Ippolito, D. A., et J. R. Myra. « ICRF-edge and surface interactions ». Journal of Nuclear Materials 415, no 1 (août 2011) : S1001—S1004. http://dx.doi.org/10.1016/j.jnucmat.2010.08.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Heinzmann, U., S. Holloway, A. W. Kleyn, R. E. Palmer et K. J. Snowdon. « Orientation in molecule - surface interactions ». Journal of Physics : Condensed Matter 8, no 19 (6 mai 1996) : 3245–69. http://dx.doi.org/10.1088/0953-8984/8/19/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Garnier, Philippe. « Photo Lithography - Surface Preparation Interactions ». Solid State Phenomena 219 (septembre 2014) : 177–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.219.177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
More than one third of process operations consist in surface preparations in the integrated circuits’ manufacturing. Most of them are directly or indirectly linked with photo lithography. This paper deals with these interactions.
45

Vasa, Parinda. « Exciton-surface plasmon polariton interactions ». Advances in Physics : X 5, no 1 (1 janvier 2020) : 1749884. http://dx.doi.org/10.1080/23746149.2020.1749884.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kjellander, Roland, et Stjepan Marčelja. « Surface interactions in simple electrolytes ». Journal de Physique 49, no 6 (1988) : 1009–15. http://dx.doi.org/10.1051/jphys:019880049060100900.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Curtarolo, Stefano, Wahyu Setyawan et Renee D. Diehl. « Gas-Surface Interactions on Quasicrystals ». Israel Journal of Chemistry 51, no 11-12 (17 novembre 2011) : 1304–13. http://dx.doi.org/10.1002/ijch.201100129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Müller, M. M., M. Deserno et J. Guven. « Geometry of surface-mediated interactions ». Europhysics Letters (EPL) 69, no 3 (février 2005) : 482–88. http://dx.doi.org/10.1209/epl/i2004-10368-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Perera, Komitige H., et Preethi L. Chandran. « Interactions of Cell Surface Glycoproteins ». Biophysical Journal 108, no 2 (janvier 2015) : 485a. http://dx.doi.org/10.1016/j.bpj.2014.11.2651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Meyle, J., H. Wolburg et A. F. Von Recum. « Surface Micromorphology and Cellular Interactions ». Journal of Biomaterials Applications 7, no 4 (avril 1993) : 362–74. http://dx.doi.org/10.1177/088532829300700404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie