Littérature scientifique sur le sujet « Interactive toxicity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interactive toxicity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Interactive toxicity"
Venturini, Loretta, et Sheldon B. Sparber. « Salicylate and cocaine : interactive toxicity during chicken mid-embryogenesis ». Free Radical Biology and Medicine 30, no 2 (janvier 2001) : 198–207. http://dx.doi.org/10.1016/s0891-5849(00)00455-x.
Texte intégralKalichman, Seth Charles, Harold Katner, Marnie Hill, Moira O’Connor Kalichman et Dominica Hernandez. « Alcohol-Related Intentional Antiretroviral Nonadherence among People Living with HIV : Test of an Interactive Toxicity Beliefs Process Model ». Journal of the International Association of Providers of AIDS Care (JIAPAC) 18 (1 janvier 2019) : 232595821982661. http://dx.doi.org/10.1177/2325958219826612.
Texte intégralSun, Hong-Jie, Bala Rathinasabapathi, Bing Wu, Jun Luo, Li-Ping Pu et Lena Q. Ma. « Arsenic and selenium toxicity and their interactive effects in humans ». Environment International 69 (août 2014) : 148–58. http://dx.doi.org/10.1016/j.envint.2014.04.019.
Texte intégralKacham, R., S. Karanth, P. Baireddy, J. Liu et C. Pope. « Interactive toxicity of chlorpyrifos and parathion in neonatal rats : Role of esterases in exposure sequence-dependent toxicity ». Toxicology and Applied Pharmacology 210, no 1-2 (janvier 2006) : 142–49. http://dx.doi.org/10.1016/j.taap.2005.09.014.
Texte intégralIanevski, Aleksandr, Sanna Timonen, Alexander Kononov, Tero Aittokallio et Anil K. Giri. « SynToxProfiler : An interactive analysis of drug combination synergy, toxicity and efficacy ». PLOS Computational Biology 16, no 2 (3 février 2020) : e1007604. http://dx.doi.org/10.1371/journal.pcbi.1007604.
Texte intégralDryden, Christina L., Andrew S. Gordon et John R. Donat. « Interactive regulation of dissolved copper toxicity by an estuarine microbial community ». Limnology and Oceanography 49, no 4 (juillet 2004) : 1115–22. http://dx.doi.org/10.4319/lo.2004.49.4.1115.
Texte intégralNelson, B. K., David L. Conover, Peter B. Shaw, Dwight M. Werren, Richard M. Edwards et Alan M. Hoberman. « Interactive developmental toxicity of radiofrequency radiation and 2-methoxyethanol in rats ». Teratology 50, no 4 (octobre 1994) : 275–93. http://dx.doi.org/10.1002/tera.1420500403.
Texte intégralElyamine, Ali, Javaria Afzal, Muhammad Rana, Muhammad Imran, Miaomiao Cai et Chengxiao Hu. « Phenanthrene Mitigates Cadmium Toxicity in Earthworms Eisenia fetida (Epigeic Specie) and Aporrectodea caliginosa (Endogeic Specie) in Soil ». International Journal of Environmental Research and Public Health 15, no 11 (27 octobre 2018) : 2384. http://dx.doi.org/10.3390/ijerph15112384.
Texte intégralKungolos, A., P. Samaras, A. M. Kipopoulou, A. Zoumboulis et G. P. Sakellaropoulos. « Interactive toxic effects of agrochemicals on aquatic organisms ». Water Science and Technology 40, no 1 (1 juillet 1999) : 357–64. http://dx.doi.org/10.2166/wst.1999.0067.
Texte intégralAhsanullah, M., MC Mobley et P. Rankin. « Individual and combined effects of zinc, cadmium and copper on the marine amphipod Allorchestes compressa ». Marine and Freshwater Research 39, no 1 (1988) : 33. http://dx.doi.org/10.1071/mf9880033.
Texte intégralThèses sur le sujet "Interactive toxicity"
Lyle, Zoe Jean. « The interactive toxicity of benzo(a)pyrene and ultraviolet radiation : an in vitro investigation ». Thesis, University of Plymouth, 2008. http://hdl.handle.net/10026.1/2203.
Texte intégralBetancourt-Lozano, Miguel. « Interactive toxicity of a triazole-derivative fungicide and an organophosphate pesticide in the marine shrimp Litopenaeus vannamei (Boone, 1931) ». Thesis, University of Stirling, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365004.
Texte intégralVevers, William F. « Deoxynivalenol : toxicological profile and potential for reducing cereal grain contamination using bacterial additives in fermented animal feed ». Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/4305.
Texte intégralHowarth, Julie Anne. « Aspects of the interaction between cadmium and the acute inflammatory response ». Thesis, University of Surrey, 1988. http://epubs.surrey.ac.uk/847535/.
Texte intégralPerdrizet, Isabelle. « Toxicité du cisplatine ». Paris 5, 1988. http://www.theses.fr/1988PA05P113.
Texte intégralSantos, Bárbara Rosa da Fonseca. « Toxicity interaction of cooper and salinity on Perez frog life stages ». Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7519.
Texte intégralPopulations of amphibians are declining worldwide. Among the major causes for such decline are chemical contamination and climate changes (e.g. increase in temperature, salinization of coastal freshwater ecosystems). Actually, the group of amphibians may be very sensitive to these stressors as they possess a thin and permeable skin with no physical protection that allows cutaneous respiration but also the diffusion of chemical agents present in the environment. Furthermore, their biphasic life cycle exposes amphibains both to aquatic, terrestrial and atmospheric contamination, potentiating the period of exposure. Consequently, it is necessary to understand the effects that chemical contamination may pose to this group of organisms and how other factors may influence their sensitivity to chemical stress. Accordingly, the present work intended at evaluating how life stage and the combination with other stressors may influence the toxicity of copper to the Perez´s frog Pelophylax perezi (Seoane). To attain this main goal, two specific objectives were delineated: (i) to compare the sensitivity of different life stages, embryos versus tadpoles, to copper (Experimental design 1), and (ii) to evaluate the influence of increased salinity (an indirect effect of climate changes in coastal freshwater lagoons) on the toxicity of copper to embryos and tadpoles of P. perezi (Experimental design 2). For this, eggs at Gosner stage 10-11 and tadpoles at Gosner stage 25 were used to carry out 96h exposure assays. For the first experiment, the two life stages were exposed to a gradient of copper plus a control (FETAX). In the second experiment, embryos and tadpoles were exposed to combinations of copper and NaCl (to simulate an increased salinity) in a complete bifactorial experimental design. In the two experiments the following endpoints were monitored: (i) for embryos, mortality was registered every 24h and at the end of the assay the final body length and malformations rate of surviving larvae were assessed; (ii) for tadpoles mortality and swimming behavior were monitored every 24h. Additionally, at the end of the experimental desing 2 the enzymatic activity, of surviving larvae/tadpoles, was quantified for catalase (CAT), cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH). The obtained results showed that embryos were less sensitive to copper than tadpoles (aproximately 50% of mortality at 1.6 mg/L Cu and LC50=0.93 mg/L Cu, respectively). Furthermore, it was observed that NaCl did not influence the lethal toxicity of copper to tadpoles, but, it significantly reduced the copper toxicity to embryos. Regarding enzymatic responses, a clear and consistent response was not observed for the tested treatments. However, for some copper concentration, the presence of NaCl induced an increase of the activity of CAT, relatively to that observed when orgaisms were exposed solely to copper, both for embryos and tadpoles. Also, in some copper concentrations, the presence of NaCl caused an increase or decrease in the activity of LDH in embryos and tadpoles, respectively. In addition, and contrarirly to what was reported for copper, it was observed that embryos were more sensitive to increased salinity (NaCl) than tadpoles. The results obtained in the present study, highlighted the need, within the context of ecological risk evaluation, to characterize the sensitivity of different life stages of amphibians to different chemicals and to the combination of diverse stressors.
As populacões de anfíbios estão em declínio a nível mundial. Duas das principais causas para este declínio são a contaminação química e alterações climáticas (e.g. aumento das temperaturas, salinização de zonas costeiras). De facto, os anfíbios podem ser muito sensíveis a estes agentes perturbadores, visto possuírem uma pele fina e permeável, sem protecção física, que permite a respiração cutânea mas também a difusão de agentes químicos presentes no ambiente. Além disso, o seu ciclo de vida bifásico expõe-os a contaminação aquática, terrestre, e atmosférica, potenciando o seu período de exposição. Consequentemente, é necessário compreender os efeitos que a contaminação química pode ter neste grupo de organismos, e de que modo outros factores podem influenciar a sua sensibilidade à perturbação química. Deste modo, o presente estudo pretendeu avaliar a influência do estádio de vida e da presença de outros agentes perturbadores na toxicidade de cobre em rã verde, Pelophylax perezi (Seoane). Para atingir este objectivo principal, foram delineados dois objectivos específicos: (i) comparar a sensibilidade de diferentes estádios de vida (embriões verusus girinos) ao cobre (Experiência 1), e (ii) avaliar a influência do aumento de salinidade (efeito indirecto das alterações climáticas em lagoas de água doce costeiras) na toxicidade de cobre para embriões e girinos de P.perezi (Experiência 2). Para tal, foram usados ovos no estádio de Gosner 10-11 e girinos no estádio de Gosner 25 para realizar ensaios de toxicicidade com 96h de exposição. Na primeira experiência, os dois estádios de vida foram expostos a um gradiente de cobre mais um controlo (FETAX). Na segunda experiência, os embriões e girinos foram expostos a combinações de cobre e NaCl (para simular um aumento de salinidade) num desenho experimental bifactorial completo. Nas duas experiências foram monitorizadas as seguintes respostas aos agentes perturbadores: (i) para os embriões, a mortalidade foi registada a cada 24h e no final do ensaio o tamanho corporal final e a taxa de malformações nas larvas sobreviventes; (ii) no caso dos girinos, a mortalidade e o comportamento natatório foram monitorizados a cada 24h. Adicionalmente, no final da segunda experiência (em que foi avaliada a influência de NaCl na toxicidade de cobre), foi quantificada a actividade enzimática da catalase (CAT), colinesterase (ChE), glutationa S-transferase (GST) e lactato desidrogenase (LDH) nas larvas (que eclodiram no final do ensaio-96h) e nos girinos. Os resultados obtidos demonstraram que os embriões foram menos sensíveis ao cobre do que os girinos (cerca de 50% de mortalidade na concentração de 1.6 mg/L Cu e LC50=0.93 mg/L Cu respectivamente). Mais ainda, foi observado que o NaCl não influenciou a toxicidade letal do cobre nos girinos, mas reduziu significativamente a toxicidade do cobre nos embriões. Relativamente às respostas enzimáticas, não foi observado um padrão consistente de repostas aos vários tratamentos. No entanto, em algumas concentrações de cobre, combinadas com NaCl, observou-se que a presença de NaCl induziu a actividade da enzima CAT relativamente ao efeito observado apenas pela presença de cobre. Verificou-se ainda que, em algumas concentrações de cobre, a presença de NaCl induziu uma redução e um aumento da actividade da LDH em girinos e embriões, respectivamente, em comparação com a actividade da enzima em exposições só a cobre. Mais ainda, e contrário ao que foi registado para o cobre, foi observado que os embriões apresentaram uma maior sensibilidade ao aumento da salinidade (NaCl) do que os girinos. Os resultados obtidos no presente estudo destacam a necessidade de, num contexto das avaliações de risco ecológico, caracterizar a sensibilidade dos diferentes estádios de vida dos anfibios a diferentes químicos e a combinações de de agentes perturbadores.
Waterman, Kellie Lynne. « Interaction of Gold Nanoparticles with a Supported Lipid Bilayer Using Quartz Crystal Microblance with Dissipation ». Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/291.
Texte intégralTashjian, Diran Hovsep. « Selenium toxicokinetics, chronic toxicity, and interaction with salinity stress in white sturgeon / ». For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Texte intégralHsieh, Gin-Chang. « The Immunological and Neurochemical Toxicity of Benzene and its Interaction with Toluene in Mice ». DigitalCommons@USU, 1988. https://digitalcommons.usu.edu/etd/4645.
Texte intégralMd, Amin Roswati. « Copepods in Skeletonema-dominated food webs : Toxicity and nutritional quality as factors controlling copepod-diatom interactions ». Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49411.
Texte intégralLivres sur le sujet "Interactive toxicity"
Maljković, Teodora. Health effects of ash from coal gasification and interaction with heavy metals in rats = : Zdravstveni učinak šljake iz uplinjavanja ugljena i interakcija s teškim metalima u štakora. Zagreb : Jugoslavenska akademija znanosti i umjetnosti, 1988.
Trouver le texte intégralPatisaul, Heather B., et Scott M. Belcher. The Path Forward. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0008.
Texte intégralMineral fibres : Crystal chemistry, chemical-physical properties, biological interaction and toxicity. Mineralogical Society, 2017.
Trouver le texte intégralGualtieri, A. F., dir. Mineral fibres : Crystal chemistry, chemical-physical properties, biological interaction and toxicity. Mineralogical Society of Great Britain & Ireland, 2017. http://dx.doi.org/10.1180/emu-notes.18.
Texte intégralWetzel, Ronald, et Rakesh Mishra. Structural Biology. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0012.
Texte intégralCavanna, Andrea E. Phenytoin. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198791577.003.0010.
Texte intégralMaysinger, Dusica, P. Kujawa et Jasmina Lovrić. Nanoparticles in medicine. Sous la direction de A. V. Narlikar et Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.14.
Texte intégralPadmakumar, Anand D., et Mark C. Bellamy. Pathophysiology and causes of jaundice in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0192.
Texte intégralOlkkola, Klaus T., Hugo E. M. Vereecke et Martin Luginbühl. Drug interactions in anaesthetic practice. Sous la direction de Michel M. R. F. Struys. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0021.
Texte intégralChapitres de livres sur le sujet "Interactive toxicity"
Kungolos, A., V. Batziaka, P. Samaras, G. P. Sakellaropoulos, A. M. Kipopoulou, A. Zoumboulis et Th Kouimtzis. « Using Toxkits for calculating interactive effects of chemicals ». Dans New Microbiotests for Routine Toxicity Screening and Biomonitoring, 487–93. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4289-6_54.
Texte intégralKatsifis, Spiros P., et Patrick L. Kinney. « Antagonistic Interaction of Sodium Arsenite and Lead Sulfate with UV Light on Sister Chromatid Exchanges in Human Peripheral Lymphocytes ». Dans Toxicity Assessment Alternatives, 53–61. Totowa, NJ : Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-718-5_5.
Texte intégralLee, Wing-Kee. « Cell Organelles as Targets of Cadmium Toxicity ». Dans Cadmium Interaction with Animal Cells, 83–105. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89623-6_4.
Texte intégralIsphording, Wayne C. « Comparison of the Toxicity Characteristic Leaching Procedure (TCLP) with bioavailability determined by selective stripping, ion site partitioning analysis ». Dans Water-Rock Interaction, 879–83. London : Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-219.
Texte intégralSpagnoletti, Federico N., Raúl S. Lavado et Romina Giacometti. « Interaction of Plants and Arbuscular Mycorrhizal Fungi in Responses to Arsenic Stress : A Collaborative Tale Useful to Manage Contaminated Soils ». Dans Mechanisms of Arsenic Toxicity and Tolerance in Plants, 239–55. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1292-2_10.
Texte intégralJiang, Xiaofeng, et Mei Li. « Interaction of Microplastics and Heavy Metals : Toxicity, Mechanisms, and Environmental Implications ». Dans The Handbook of Environmental Chemistry, 185–95. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/698_2020_460.
Texte intégralWimmer, M. A., K. H. Muehling, A. Läuchli, P. H. Brown et H. E. Goldbach. « Interaction of salinity and boron toxicity in wheat (Triticum aestivum L.) ». Dans Plant Nutrition, 426–27. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_206.
Texte intégralDavis-Carter, J. G., M. B. Parker et T. P. Gaines. « Interaction of soil zinc, calcium, and pH with zinc toxicity in peanuts ». Dans Plant-Soil Interactions at Low pH, 339–47. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3438-5_39.
Texte intégralIlinskaya, Anna N., et Marina A. Dobrovolskaia. « Interaction Between Nanoparticles and Plasma Proteins : Effects on Nanoparticle Biodistribution and Toxicity ». Dans Polymer Nanoparticles for Nanomedicines, 505–20. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41421-8_15.
Texte intégralDollery, C. T. « The Assessment of Efficacy, Toxicity and Quality of Care in Long-Term Drug Treatment ». Dans Ciba Foundation Symposium 44 - Research and Medical Practice : Their Interaction, 73–95. Chichester, UK : John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720264.ch6.
Texte intégralActes de conférences sur le sujet "Interactive toxicity"
Wright, Austin P., Omar Shaikh, Haekyu Park, Will Epperson, Muhammed Ahmed, Stephane Pinel, Diyi Yang et Duen Horng Chau. « RECAST : Interactive Auditing of Automatic Toxicity Detection Models ». Dans Chinese CHI 2020 : The eighth International Workshop of Chinese CHI. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3403676.3403691.
Texte intégralLiu, B. L., et J. J. McGrath. « Vitrification Solutions for the Cryopreservation of Tissue-Engineered Bone ». Dans ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32556.
Texte intégralWang, Kexin, Xiang Sang, Shuanghuang Xiao, Hongqin Yang, Yiru Peng, Shusen Xie et Jianling Chen. « Interaction of gold nanorods with ovarian cells : toxicity, uptake and intracellular distribution ». Dans Eleventh International Conference on Information Optics and Photonics (CIOP 2019), sous la direction de Hannan Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2548784.
Texte intégralDesai, Kaushal, David Brott, Xiaohua Hu et Anastasia Christianson. « A Systems Biology Approach for Detecting Toxicity-Related Hotspots inside Protein Interaction Networks ». Dans 2011 IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB). IEEE, 2011. http://dx.doi.org/10.1109/hisb.2011.61.
Texte intégralSrikanth, M., H. Misak, S. Y. Yang et R. Asmatulu. « Effects of Morphology, Concentration and Contact Duration of Carbon-Based Nanoparticles on Cytotoxicity of L929 Cells ». Dans ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52296.
Texte intégralGoel, Raghav, Neha Shah, Rachana Visaria, Giulio F. Paciotti et John C. Bischof. « Biodistribution of TNF-alpha Coated Gold Nanoparticles in an In Vivo Cancer Model ». Dans ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192931.
Texte intégralKungolos, A., V. Tsiridis, H. Nassopoulos, P. Samaras et N. Tsiropoulos. « Toxicity assessment of fosthiazate, metalaxyl-M and imidacloprid and their interaction with copper on Daphnia magna ». Dans ENVIRONMENTAL TOXICOLOGY 2006. Southampton, UK : WIT Press, 2006. http://dx.doi.org/10.2495/etox060221.
Texte intégralShah, Neha B., et John C. Bischof. « Effect of Surface Charge on Gold Nanoparticle Biotransport : An In Vivo Blood and Biodistribution Study ». Dans ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53324.
Texte intégralBuyukhatipoglu, Kivilcim, Tiffany A. Miller et Alisa Morss Clyne. « Biocompatible, Superparamagnetic, Flame Synthesized Iron Oxide Nanoparticles : Cellular Uptake and Toxicity Studies ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68049.
Texte intégralBasuki, Sovia Aprina, Neva Melinda Maulanasari et Engrid Juni Astuti. « Toxicity on Class of Antibiotic Agents Using Toxtree Software and Its Interaction with Its Receptors Using Molecular Virtual Docker Software ». Dans Health Science International Conference (HSIC 2017). Paris, France : Atlantis Press, 2017. http://dx.doi.org/10.2991/hsic-17.2017.28.
Texte intégralRapports d'organisations sur le sujet "Interactive toxicity"
Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss. Interaction of Actinide Species with Microorganisms & ; Microbial Chelators : Cellular Uptake, Toxicity, & ; Implications for Bioremediation of Soil & ; Ground Water. Office of Scientific and Technical Information (OSTI), mars 2006. http://dx.doi.org/10.2172/878161.
Texte intégral