Littérature scientifique sur le sujet « Interfacial deformation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interfacial deformation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Interfacial deformation"
Stone, H. A., et L. G. Leal. « The effects of surfactants on drop deformation and breakup ». Journal of Fluid Mechanics 220 (novembre 1990) : 161–86. http://dx.doi.org/10.1017/s0022112090003226.
Texte intégralMangipudi, V. S., et M. Tirrell. « Contact-Mechanics-Based Studies of Adhesion between Polymers ». Rubber Chemistry and Technology 71, no 3 (1 juillet 1998) : 407–48. http://dx.doi.org/10.5254/1.3538490.
Texte intégralPelipenko, Jan, Julijana Kristl, Romana Rošic, Saša Baumgartner et Petra Kocbek. « Interfacial rheology : An overview of measuring techniques and its role in dispersions and electrospinning ». Acta Pharmaceutica 62, no 2 (1 juin 2012) : 123–40. http://dx.doi.org/10.2478/v10007-012-0018-x.
Texte intégralTAKADA, NAOKI, AKIO TOMIYAMA et SHIGEO HOSOKAWA. « LATTICE BOLTZMANN SIMULATION OF INTERFACIAL DEFORMATION ». International Journal of Modern Physics B 17, no 01n02 (20 janvier 2003) : 179–82. http://dx.doi.org/10.1142/s0217979203017308.
Texte intégralTakahashi, Yasuo, et Michinobu Inoue. « Numerical Study of Wire Bonding—Analysis of Interfacial Deformation Between Wire and Pad ». Journal of Electronic Packaging 124, no 1 (13 mars 2001) : 27–36. http://dx.doi.org/10.1115/1.1413765.
Texte intégralSamanta, Amit, et Weinan E. « Interfacial diffusion aided deformation during nanoindentation ». AIP Advances 6, no 7 (juillet 2016) : 075002. http://dx.doi.org/10.1063/1.4958299.
Texte intégralHaruki, Sakamaki, Kumagai Ichiro, Oishi Yoshihiko, Tasaka Yuji et Murai Yuichi. « 1051 FLOWS AND INTERFACIAL DEFORMATION AROUND A HYDROFOIL BENEATH A FREE SURFACE ». Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013) : _1051–1_—_1051–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1051-1_.
Texte intégralWETZEL, ERIC D., et CHARLES L. TUCKER. « Droplet deformation in dispersions with unequal viscosities and zero interfacial tension ». Journal of Fluid Mechanics 426 (10 janvier 2001) : 199–228. http://dx.doi.org/10.1017/s0022112000002275.
Texte intégralLee, Doojin, et Amy Q. Shen. « Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows ». Micromachines 12, no 3 (6 mars 2021) : 272. http://dx.doi.org/10.3390/mi12030272.
Texte intégralKomvopoulos, K., et W. Yan. « Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems ». Journal of Tribology 120, no 4 (1 octobre 1998) : 808–13. http://dx.doi.org/10.1115/1.2833783.
Texte intégralThèses sur le sujet "Interfacial deformation"
Hargreaves, Alexander Leighton. « Optical deformation of microdroplets at ultralow interfacial tension ». Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11617/.
Texte intégralTze, William tai-Yin. « Effects of Fiberimatiux Interactions on the Interfacial Deformation Micromechanics of Cellulose-Fiberipolymer Composites ». Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/TzeWT2003.pdf.
Texte intégralTsai, Scott. « Magnetic Spheres in Viscous Flows and at Interfaces : Sorting, Coating, and Interfacial Deformation ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10151.
Texte intégralEngineering and Applied Sciences
Rusli, Rafeadah. « Interfacial micromechanics of natural cellulose whisker polymer nanocomposites using Raman spectroscopy ». Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/interfacial-micromechanics-of-natural-cellulose-whisker-polymer-nanocomposites-using-raman-spectroscopy(2eab8693-78b1-4241-bcfb-f7d2ae39fbf6).html.
Texte intégralZhou, Diwen. « Interfacial dynamics in complex fluids : studies of drop and free-surface deformation in polymer solutions ». Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17457.
Texte intégralHabibzadeh, Pouya. « Small Scale Plasticity With Confinement and Interfacial Effects ». Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/226220.
Texte intégralDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Peng, Xuan. « Co-deformation and bonding of multi-component billets with application to Nb-Sn based superconductor processing ». Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127096847.
Texte intégralTitle from first page of PDF file. Document formatted into pages; contains xix, 182 p.; also includes graphics (some col.). Includes bibliographical references (p. 177-182). Available online via OhioLINK's ETD Center
Strömbro, Jessica. « Micro-mechanical mechanisms for deformation in polymer-material structures ». Doctoral thesis, KTH, Hållfasthetslära (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4626.
Texte intégralQC 20100910
Abi, Chebel Nicolas. « Dynamique et rhéologie interfaciales à haute fréquence d'une goutte oscillante ». Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT043G/document.
Texte intégralWe present an experimental study of oscillating drop interfacial dynamics at a wide frequency range, especially at high frequency. A characterization method of drops oscillation dynamics has been developed. The oscillations are generated by imposing low amplitude periodic variation of volume to a drop which is attached to a capillary tip. The present method is based on the identification of the drop eigenmodes and the determination of their frequencies and damping rates. It has been applied to characterize several liquid-liquid systems. Three types of interface have been identified. For interfaces of type 1 (heptane/water without added surfactant), each eigenmode is modelled by a weakly damped linear oscillator. Eigenfrequencies and damping rates are well predicted by the linear theory. Interfaces of Types 2 and 3 are obtained by adding crude oil to the disperse phase. Oil native surfactants (asphaltenes, resins) adsorb on the drop interface and provide the latter with viscoelastic behaviour. For young interfaces (type 2 with aging time below 20 minutes), eigenfrequencies remain well predicted by the theory, which deals with non contaminated interfaces, whereas the measured damping rates are significantly higher than the theoretical values. On the other hand, aged interfaces (type 3) exhibit different eigenmodes, of which eigenfrequencies are much higher than the resonance frequencies measured for the young interfaces. At high frequency, the dynamics of aged interfaces are governed by the elasticity of the network constituted by the crude oil amphiphilic species, while the dynamics of young interfaces are governed by interfacial tension. Freely decaying oscillations of a rising drop in a liquid at rest without added surfactant were also considered. Measured frequencies for the first four eigenmodes are in good agreement with the linear theory. However, measured damping rates are much higher than the theoretical rates for non contaminated interfaces. In fact, residual adsorbed species at the heptane/water interface induce Marangoni effects and thus gradients of interfacial tension. Therefore, vorticity production within the boundary layers is enhanced, which explains the observed increase of the oscillation damping rates
Zhang, Hao. « Écoulement des fluides et déformation interfaciale : nano-rhéologie et force de portance ». Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0027.
Texte intégralThis thesis investigates the interplay between fluid flow and interfacial deformation using Atomic Force Microscopy (AFM). First, AFM was employed to explore the resonant thermal capillary fluctuations (RTCF) of bubble and drop surfaces, enabling the measurement of surface elasticity and bulk viscosity in surfactant-laden air/water interfaces and polymer solutions. These measurements extended the frequency range for rheological investigations, effectively overcoming the limitations of classical rheometers.Next, we introduced a non-contact method to assess the mechanical properties of living cells based on the elastohydrodynamic (EHD) interaction between the thermal vibrations of the AFM cantilever and the cell deformations. This method enabled the precise determination of the elastic modulus of a living cell for different frequencies.Finally, we conducted the first direct and quantitative measurement of the lift force acting on a sphere moving along a liquid-liquid interface. This force, arising from the coupling between viscous flow and capillary deformation of the interface, was measured as a function of the distance between the sphere and the interface using an atomic force microscope (AFM). We investigated various liquid interfaces, working frequencies, sliding velocities, and two different sphere radii. The findings provide valuable insights into interfacial phenomena and enhance the understanding of interactions between fluid flow and soft interfaces
Livres sur le sujet "Interfacial deformation"
Thermocapillary flow with evaporation and condensation at low gravit. [Washington, DC : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralKudinov, V. V., N. V. Korneeva et I. K. Krylov. Effect of components on the properties of composite materials. Nauka Publishers, 2021. http://dx.doi.org/10.7868/9785020408654.
Texte intégralChapitres de livres sur le sujet "Interfacial deformation"
Aust, K. T., U. Erb et G. Palumbo. « Interfacial Structures and Properties ». Dans Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 107–28. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1765-4_5.
Texte intégralBuisson, M., E. Patoor et M. Berveiller. « Constitutive Equations for Deformations Induced by Interfacial Motions ». Dans Anisotropy and Localization of Plastic Deformation, 536–39. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_124.
Texte intégralBalasubramaniam, R. « Unsteady Thermocapillary Flow and Free Surface Deformation in a Thin Liquid Layer ». Dans Interfacial Fluid Dynamics and Transport Processes, 201–12. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_10.
Texte intégralMoran, B., M. Gosz et J. D. Achenbach. « Effect of a Viscoelastic Interfacial Zone on the Mechanical Behavior and Failure of Fiber-Reinforced Composites ». Dans Inelastic Deformation of Composite Materials, 35–49. New York, NY : Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9109-8_2.
Texte intégralShibutani, Yoji, Hiroshi Kitagawa et Takayuki Nakamura. « Growth of interfacial inhomogeneous deformation in thin laminated material subjected to biaxial tension ». Dans Large Plastic Deformations, 261–69. London : Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-29.
Texte intégralBarrett, Christopher, et Haitham El Kadiri. « The Deformation Gradient of Interfacial Defects on Twin-like Interfaces ». Dans Magnesium Technology 2015, 121–25. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093428.ch24.
Texte intégralZinemanas, Daniel, et Avinoam Nir. « A Dynamic Free Surface Deformation Driven by Anisotropic Interfacial Forces ». Dans Variational Methods for Free Surface Interfaces, 165–72. New York, NY : Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_19.
Texte intégralBarrett, Christopher, et Haitham El Kadiri. « The Deformation Gradient of Interfacial Defects on Twin-like Interfaces ». Dans Magnesium Technology 2015, 121–25. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48185-2_24.
Texte intégralZeng, Tongyan, Essam F. Abo-Serie, Manus Henry et James Jewkes. « Thermal Optimisation Model for Cooling Channel Design Using the Adjoint Method in 3D Printed Aluminium Die-Casting Tools ». Dans Springer Proceedings in Energy, 333–40. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_31.
Texte intégralHagiwara, Yoshimichi. « Numerical Simulation of the Velocity Fluctuation and the Interfacial Deformation of Liquid-Liquid Dispersed Two-Phase Flow ». Dans Fluid Mechanics and Its Applications, 179–83. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0457-9_34.
Texte intégralActes de conférences sur le sujet "Interfacial deformation"
Váradi, Károly, Zoltán Néder, Klaus Friedrich et Joachim Flöck. « Finite Element Contact, Stress and Strain Analysis of a Composite Fibre-Matrix Micro System Subjected to Ball Indentation ». Dans ASME 1997 International Mechanical Engineering Congress and Exposition, 23–36. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1340.
Texte intégralIto, Hideaki, Tsutomu Ezumi, Susumu Takahashi et Kazuo Sato. « Impact shearing deformation behavior of interfacial crack in ENF test specimen ». Dans 24th International Congress on High-Speed Photography and Photonics, sous la direction de Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine et Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424261.
Texte intégralJenn-Ming Song, Chien-Wei Su, Yi-Shao Lai et Ying-Ta Chiu. « Time dependent deformation behavior of interfacial intermetallic compounds in electronic solder joints ». Dans 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2009. http://dx.doi.org/10.1109/impact.2009.5382227.
Texte intégralHeffes, M. J., et H. F. Nied. « Analysis of Interface Cracking in Flip Chip Packages With Viscoplastic Solder Deformation ». Dans ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35346.
Texte intégralHandoko, R. A., J. L. Beuth, M. J. Stiger, F. S. Pettit et G. H. Meier. « Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems ». Dans ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2685.
Texte intégralSharifi Kia, Danial, Shahrzad Towfighian et Congrui Jin. « Predicting the Output of a Triboelectric Energy Harvester Undergoing Mechanical Pressure ». Dans ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9157.
Texte intégralHossein, Mohammad A., Yue Zhang et Arend van der Zande. « Three-dimensional deformation and stretchable photonics enabled by interfacial slip in 2D material heterostructures ». Dans Physical Chemistry of Semiconductor Materials and Interfaces IX, sous la direction de Daniel Congreve, Christian Nielsen et Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2567539.
Texte intégralUtiugov, Grigorii, et Vladimir Chirkov. « The Change in Interfacial Tension Over Time and Its Effect on the Droplet Deformation Dynamics ». Dans 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl49583.2022.9830945.
Texte intégralSeol, Myeong-Lok, Jin-Woo Han, Jong-Ho Woo, Dong-Il Moon, Jee-Yeon Kim et Yang-Kyu Choi. « Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester ». Dans 2014 IEEE International Electron Devices Meeting (IEDM). IEEE, 2014. http://dx.doi.org/10.1109/iedm.2014.7047010.
Texte intégralYang, J., et K. Komvopoulos. « A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces ». Dans ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64271.
Texte intégralRapports d'organisations sur le sujet "Interfacial deformation"
Hsiung, L. Interfacial Control of Deformation Twinning in Creep-Deformed TiAl/Ti3Al Nanolaminate. Office of Scientific and Technical Information (OSTI), novembre 2004. http://dx.doi.org/10.2172/15014527.
Texte intégralDEFORMATION OF STEEL-BAMBOO COMPOSITE BEAM CONSIDERING THE EFFECT OF INTERFACIAL SLIPPAGE. The Hong Kong Institute of Steel Construction, septembre 2018. http://dx.doi.org/10.18057/ijasc.2018.14.3.1.
Texte intégral