Littérature scientifique sur le sujet « IPSC-Derived neural models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « IPSC-Derived neural models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "IPSC-Derived neural models"
Amalakanti, *Sridhar, Vijaya Chandra Reddy Avula et Sachin Singh. « SYSTEMATIC REVIEW OF INDUCED PLURIPOTENT STEM CELL THERAPY IN TRAUMATIC BRAIN INJURY ». International Journal of Neuropsychopharmacology 28, Supplement_1 (février 2025) : i364—i365. https://doi.org/10.1093/ijnp/pyae059.649.
Texte intégralYang, Guang, Hyenjong Hong, April Torres, Kristen Malloy, Gourav Choudhury, Jeffrey Kim et Marcel Daadi. « Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage ». International Journal of Molecular Sciences 19, no 9 (17 septembre 2018) : 2788. http://dx.doi.org/10.3390/ijms19092788.
Texte intégralSupakul, Sopak, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda et Hideyuki Okano. « Estradiol enhanced neuronal plasticity and ameliorated astrogliosis in human iPSC-derived neural models ». Regenerative Therapy 25 (mars 2024) : 250–63. http://dx.doi.org/10.1016/j.reth.2023.12.018.
Texte intégralLiu, Sijun, Yuying Zhao, Xiaoying Su, Chengcheng Zhou, Peifen Yang, Qiusan Lin, Shijun Li et al. « Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient ». Stem Cells International 2020 (18 décembre 2020) : 1–10. http://dx.doi.org/10.1155/2020/8897494.
Texte intégralBarak, Martin, Veronika Fedorova, Veronika Pospisilova, Jan Raska, Simona Vochyanova, Jiri Sedmik, Hana Hribkova, Hana Klimova, Tereza Vanova et Dasa Bohaciakova. « Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease : from Neural Stem Cells to Cerebral Organoids ». Stem Cell Reviews and Reports 18, no 2 (février 2022) : 792–820. http://dx.doi.org/10.1007/s12015-021-10254-3.
Texte intégralCostamagna, Gianluca, Giacomo Pietro Comi et Stefania Corti. « Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids ». International Journal of Molecular Sciences 22, no 5 (6 mars 2021) : 2659. http://dx.doi.org/10.3390/ijms22052659.
Texte intégralHunt, Jack F. V., Meng Li, Ryan Risgaard, Gene E. Ananiev, Scott Wildman, Fan Zhang, Tim S. Bugni, Xinyu Zhao et Anita Bhattacharyya. « High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells ». Cells 11, no 1 (27 décembre 2021) : 69. http://dx.doi.org/10.3390/cells11010069.
Texte intégralCsöbönyeiová, Mária, Štefan Polák et L’uboš Danišovič. « Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells ». Canadian Journal of Physiology and Pharmacology 94, no 7 (juillet 2016) : 687–94. http://dx.doi.org/10.1139/cjpp-2015-0459.
Texte intégralFernández-Santiago, Rubén, et Mario Ezquerra. « Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models ». Stem Cells International 2016 (2016) : 1–16. http://dx.doi.org/10.1155/2016/9464591.
Texte intégralTamura, Ryota, Masahiro Yo, Hiroyuki Miyoshi, Oltea Sampetrean, Hideyuki Saya, Hideyuki Okano et Masahiro Toda. « ET-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS ». Neuro-Oncology Advances 4, Supplement_3 (1 décembre 2022) : iii4—iii5. http://dx.doi.org/10.1093/noajnl/vdac167.015.
Texte intégralThèses sur le sujet "IPSC-Derived neural models"
Chaput, Carole. « Therapeutic functionalization of a rare neurodevelopmental and monogenic disease model based on the contribution of the HSF2 stress pathway ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5190.
Texte intégralNeurodevelopmental disorders (NDD) affect around 10% of children and are a major source of lifelong disability. Characterised by defective brain development and great variability in the clinical picture of patients, which compromises diagnosis and the emergence of therapeutic solutions, they represent a significant human, societal and economic cost. The aim of this project is to gain a better understanding of a common feature of NDDs - the deregulation of stress response pathways - which could provide a readout to understanding these pathologies. The integration of processes triggered by stress is governed by heat shock transcription factors (HSFs), which are strongly deregulated in several NDDs. This has two consequences: an altered stress response in neural cells leading to defects in brain development. We have helped to show that these HSFs are essential for proper brain development. More specifically, the team demonstrated that HSF2 plays a key role in regulating the proliferation of progenitor cells and neuronal migration in the cortex by modulating the expression of genes involved in cell adhesion. Pharmacological modulation of this pathway could therefore offer new therapeutic possibilities. In a first study, the mechanisms underlying HSF deregulation were investigated in cells from patients with Rubinstein-Taybi syndrome (RSTS), a rare genetic NDD caused by mutations in the CREBBP or EP300 genes. Our study showed a decrease in HSF2 protein levels in fibroblasts and in neural models (2D and 3D) derived from induced pluripotent stem cells (iPSCs) from RSTS patients. This decrease in HSF2 protein levels resulted from a defect in acetylation by CBP or EP300, leading to ubiquitination and degradation by the proteasome. As a result, RSTS cells showed an altered stress response and reduced expression of genes essential for neural development, in particular N-cadherin. Restoration of HSF2 levels, either by proteasome inhibition or by acetylation-mimicking mutations, restored both the stress response and the expression of neurodevelopmental genes. We found that disruption of the CBP/EP300-HSF2-N-cadherin pathway is recapitulated in RSTS neural models, which display proliferation abnormalities linked to altered cell-cell adhesion, particularly in the N-cadherin pathway. On the basis of these results and in collaboration with Ksilink, my CIFRE thesis project aims to develop a cellular model of NDD based on RSTS patients. This model will enable us to explore how perturbations in the HSF pathway could contribute to various NDDs. To achieve this objective, I first generated an HSF2 mutant that mimics the acetylated form of the protein in iPSCs derived from RSTS patient fibroblasts. Using this isogenic model as a reference, I developed and validated a two-dimensional neural culture model and identified new HSF2-dependent targets and phenotypes using a multiparametric approach ranging from high-throughput transcriptomics to cell morphological analyses. This approach made it possible to identify the pro-neuronal factor, ASCL1, and a morphological phenotype, rosette formation, as key readouts for analysis by high-content imaging. On the basis of these two phenotypes, I used the neural model to screen a selection of molecules with therapeutic potential using high-content imaging. This work will pave the way for new therapeutic approaches aimed at modulating stress response pathways, thereby opening up new possibilities for the treatment of NDD
Livres sur le sujet "IPSC-Derived neural models"
Wainger, Brian J. Amyotrophic Lateral Sclerosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0028.
Texte intégralChapitres de livres sur le sujet "IPSC-Derived neural models"
Singstad, Bjørn Jostein, Bendik Steinsvåg Dalen, Sandhya Sihra, Nickolas Forsch et Samuel Wall. « Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers ». Dans Computational Physiology, 91–109. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05164-7_8.
Texte intégralPré, Deborah, Alexander T. Wooten, Haowen Zhou, Ashley Neil et Anne G. Bang. « Assaying Chemical Long-Term Potentiation in Human iPSC-Derived Neuronal Networks ». Dans Stem Cell-Based Neural Model Systems for Brain Disorders, 275–89. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_22.
Texte intégralLomoio, Selene, et Giuseppina Tesco. « A 3D Bioengineered Neural Tissue Model Generated from Human iPSC-Derived Neural Precursor Cells ». Dans Stem Cell-Based Neural Model Systems for Brain Disorders, 185–92. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_14.
Texte intégralTukker, Anke M., Fiona M. J. Wijnolts, Aart de Groot, Richard W. Wubbolts et Remco H. S. Westerink. « In Vitro Techniques for Assessing Neurotoxicity Using Human iPSC-Derived Neuronal Models ». Dans Neuromethods, 17–35. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9228-7_2.
Texte intégralVulakh, Gabriella, et Xin Yang. « Characterizing the Neuron-Glial Interactions by the Co-cultures of Human iPSC-Derived Oligodendroglia and Neurons ». Dans Stem Cell-Based Neural Model Systems for Brain Disorders, 103–11. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_9.
Texte intégralO’Rourke, Ryan, Guzide Ayse Erdemir et Yu-Wen Alvin Huang. « Assays of Monitoring and Measuring Autophagic Flux for iPSC-Derived Human Neurons and Other Brain Cell Types ». Dans Stem Cell-Based Neural Model Systems for Brain Disorders, 221–33. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_18.
Texte intégralConnolly, Kevin, Mikael Lehoux, Benedetta Assetta et Yu-Wen Alvin Huang. « Modeling Cellular Crosstalk of Neuroinflammation Axis by Tri-cultures of iPSC-Derived Human Microglia, Astrocytes, and Neurons ». Dans Stem Cell-Based Neural Model Systems for Brain Disorders, 79–87. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_7.
Texte intégralVarela, Maria C., Ranmal Samarasinghe et Jack M. Parent. « Functional Exploration of Epilepsy Genes in Patient-Derived Cells ». Dans Jasper's Basic Mechanisms of the Epilepsies, sous la direction de Jeffrey L. Noebels, 841–60. 5e éd. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.003.0042.
Texte intégralActes de conférences sur le sujet "IPSC-Derived neural models"
Pitta, Marina Galdino da Rocha, Jordy Silva de Carvalho, Luzilene Pereira de Lima et Ivan da Rocha Pitta. « iPSC therapies applied to rehabilitation in parkinson’s disease ». Dans XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.022.
Texte intégralRavagnani, Felipe, Hellen Valerio, Jersey Maués, Arthur de Oliveira, Renato Puga, Karina Oliveira, Fabíola Picosse et al. « Omics profile of iPSC-derived astrocytes from Progressive Supranuclear Palsy (PSP) patients ». Dans XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.414.
Texte intégral