Littérature scientifique sur le sujet « Isotope kinetic effect »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Isotope kinetic effect ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Isotope kinetic effect"
Musich, О., A. Zubko et О. Demyanуuk. « Isotopic effect of macro- and microelements in ecosystems ». Balanced nature using, no 4 (18 août 2020) : 132–38. http://dx.doi.org/10.33730/2310-4678.4.2020.226644.
Texte intégralXu, Yingkui, Dan Zhu, Xiongyao Li et Jianzhong Liu. « Why magnesium isotope fractionation is absent from basaltic melts under thermal gradients in natural settings ». Geological Magazine 157, no 7 (25 novembre 2019) : 1144–48. http://dx.doi.org/10.1017/s0016756819001304.
Texte intégralBinder, David A., et Robert Eliason. « Kinetic hydrogen isotope effect ». Journal of Chemical Education 63, no 6 (juin 1986) : 536. http://dx.doi.org/10.1021/ed063p536.
Texte intégralKrinkin, David. « Anomalously large kinetic isotope effect ». Open Chemistry 5, no 4 (1 décembre 2007) : 1019–63. http://dx.doi.org/10.2478/s11532-007-0048-2.
Texte intégralJoelsson, L. M. T., J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono et M. S. Johnson. « Development of a new methane tracer : kinetic isotope effect of <sup>13</sup>CH<sub>3</sub>D + OH from 278 to 313 K ». Atmospheric Chemistry and Physics Discussions 15, no 19 (15 octobre 2015) : 27853–75. http://dx.doi.org/10.5194/acpd-15-27853-2015.
Texte intégralRöckmann, T., S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann et F. Rohrer. « Isotope effect in the formation of H<sub>2</sub> ; from H<sub>2</sub>CO studied at the atmospheric simulation chamber SAPHIR ». Atmospheric Chemistry and Physics 10, no 12 (16 juin 2010) : 5343–57. http://dx.doi.org/10.5194/acp-10-5343-2010.
Texte intégralAway, Kenneth Charles West, et Zhu-Gen Lai. « Solvent effects on SN2 transition state structure. II : The effect of ion pairing on the solvent effect on transition state structure ». Canadian Journal of Chemistry 67, no 2 (1 février 1989) : 345–49. http://dx.doi.org/10.1139/v89-056.
Texte intégralMurata, Yasujiro, Shih-Ching Chuang, Fumiyuki Tanabe, Michihisa Murata et Koichi Komatsu. « Recognition of hydrogen isotopomers by an open-cage fullerene ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 371, no 1998 (13 septembre 2013) : 20110629. http://dx.doi.org/10.1098/rsta.2011.0629.
Texte intégralTsai, I.-Chun, Wan-Yu Chen, Jen-Ping Chen et Mao-Chang Liang. « Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model ». Atmospheric Chemistry and Physics 19, no 3 (8 février 2019) : 1753–66. http://dx.doi.org/10.5194/acp-19-1753-2019.
Texte intégralUspenskaya, Elena V., Tatyana V. Pleteneva, Anton V. Syroeshkin, Ilaha V. Kazimova, Tatyana E. Elizarova et Artem I. Odnovorov. « Role of stable hydrogen isotope variations in water for drug dissolution managing ». Current Issues in Pharmacy and Medical Sciences 33, no 2 (1 juin 2020) : 94–101. http://dx.doi.org/10.2478/cipms-2020-0017.
Texte intégralThèses sur le sujet "Isotope kinetic effect"
Lu, Siran. « Single molecule kinetic isotope effect ». Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526483.
Texte intégralKopec-Harding, Kamilla Rosa. « Computational studies of the kinetic isotope effect inmethylamine dehydrogenase ». Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/computational-studies-of-the-kinetic-isotope-effect-inmethylamine-dehydrogenase(b6883173-40ea-4a35-948b-c966105230cd).html.
Texte intégralBurke, Erin E. « Heavy atom and hydrogen kinetic isotope effect studies on recombinant, mammalian sialyltransferases ». [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011586.
Texte intégralIngle, Shakti Singh. « RNA structure investigation : a deuterium kinetic isotope effect/hydroxyl radical cleavage experiment ». Thesis, Boston University, 2013. https://hdl.handle.net/2144/12787.
Texte intégralThe hydroxyl radical is widely used as a high-resolution footprinting agent for DNA and RNA. The hydroxyl radical abstracts a hydrogen atom from the sugar- phosphate backbone of a nucleic acid molecule, creating a sugar-based radical that eventually results in a strand break. It was shown previously that replacement of deoxyribose hydrogen atoms with deuterium results in a kinetic isotope effect (KIE) on hydroxyl radical cleavage of DNA. The KIE correlates well with the solvent accessible surface area of a deoxyribose hydrogen atom in DNA. We chose the structurally well-defmed sarcin-ricin loop (SRL) RNA molecule as a model system to extend the deuterium KIE/hydroxyl radical cleavage experiment to RNA. We observed a substantial KIE upon deuteration of the 5'-carbon of the ribose. Values ranged from 1.20 to 1.96, and depended on the position of the residue within the SRL. We found a smaller KIE upon 4'-deuteration. Values ranged from 1.05 to 1.23. Values of 5' and 4' KIEs correlate with the extent of cleavage and with the solvent accessible surface areas of ribose hydrogen atoms ofthe SRL. Gel electrophoresis of cleavage products reveals that the strand break is terminated at the 5' end by multiple chemical species. Upon 3'-radiolabeling a specifically 5'-deuterated SRL RNA molecule, we observed a KIE on the production of a cleavage product having a gel mobility different from that of a phosphate-terminated RNA strand. Reduction with sodium borohydride gave rise to an RNA fragment terminated by a 5'-hydroxyl group. These experiments are consistent with 5' hydrogen abstraction by the hydroxyl radical producing a 5'-aldehyde-terminated RNA strand that retains the nucleotide from which the hydrogen atom was abstracted. This is the first report of such a species. This chemistry has important implications for the interpretation of structural analysis experiments on RNA that rely on primer extension to synthesize eDNA copies of hydroxyl radical cleavage products. The different 5'-terminated products resulting from hydroxyl radical cleavage at a given nucleotide would yield cDNAs of two different lengths, thereby distributing the cleavage intensity over two nucleotides instead ofone and lowering the resolution ofthe experiment.
Yousefi-Shivyari, Niloofar. « Isotope ratios in source determination of formaldehyde emissions ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99308.
Texte intégralMaster of Science
Home-interior products like cabinetry are often produced with wood composites adhesively bonded with urea-formaldehyde (UF) resin. UF resins are low cost and highly effective, but their chemical nature results in formaldehyde emission from the composite. High emissions are avoided, and the federal government has regulated and steadily reduced allowable emissions since 1985. The industry continuously improved UF technologies to meet regulations, as in 2010 when the most demanding regulations were implemented. At that time, many people were unaware that wood also generates formaldehyde; this occurs at very low levels but heating during composite manufacture causes a temporary burst of natural formaldehyde. Some wood types produce unusually high formaldehyde levels, making regulation compliance more difficult. This situation, and the desire to raise public awareness, created a major industrial goal: determine how much formaldehyde emission originates from the resin and how much originates from the wood. These formaldehyde sources can be distinguished by measuring the carbon isotope ratio, 13C/12C. This ratio changes and varies due to the kinetic isotope effect. Slight differences in 13C and 12C reactivity reveal the source as either petrochemical (synthetic formaldehyde) or plant-based (biogenic formaldehyde). This work demonstrates that achieving the industry goal is entirely feasible, and it provides the analytical foundation. The technical strategy is: 1) establish reference isotope ratios in wood and in UF resin, and 2) from the corresponding wood composite, capture formaldehyde emissions, measure the isotope ratio, and simply calculate the percentage contributions from the reference sources. However, a complication exists. When the reference sources generate formaldehyde, the respective isotope ratios change systematically in a process called isotope fractionation (another term for the kinetic isotope effect). Consequently, this effort developed methods to measure fractionation when cured UF resin and wood separately generate formaldehyde, with greater emphasis on wood. Isotope fractionation in wood revealed multiple fractionation mechanisms. This complexity presents intriguing possibilities for new perspectives on formaldehyde emission from wood and cured UF resin. In summary, this work demonstrated how source contributions to formaldehyde emissions can be determined; it established effective methods required to refine and perfect the approach, and it revealed that isotope fractionation could serve as an entirely novel tool in the materials science of wood composites.
MacMillar, Susanna. « Isotopes as Mechanism Spies : Nucleophilic Bimolecular Substitution and Monoamine Oxidase B Catalysed Amine Oxidation Probed with Heavy Atom Kinetic Isotope Effects ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis (AUU), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7441.
Texte intégralPagano, Philip Lee Jr. « Investigating fast dynamics at the tunneling ready state in formate dehydrogenase ». Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5592.
Texte intégralIndurugalla, Deepani. « A kinetic isotope effect study on the acid-catalyzed hydrolysis of methyl xylopyranosides and methyl 5-thioxylopyranosides ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0021/NQ37716.pdf.
Texte intégralLorenzini, Leonardo. « Effects of T3 and 3-iodothyronamine (T1AM) on cellular metabolism, and influence of serum proteins on T1AM assay ». Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1046523.
Texte intégralRichan, Teisha. « Conservative Tryptophan Mutations in Protein Tyrosine Phosphatase PTP1B and its Effect on Catalytic Rate and Chemical Reaction ». DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/5584.
Texte intégralLivres sur le sujet "Isotope kinetic effect"
Wilson, Mathew John. Investigating the possibility of measuring a primary leaving group iodine kinetic isotope effect. Sudbury, Ont : Laurentian University, 1999.
Trouver le texte intégralJiang, Wenyi. Using kinetic isotope effects to determine the effect of ion pairing, substituents and the solvent on the structure of the Sn2 transition state. Sudbury, Ont : Laurentian University Press, 1995.
Trouver le texte intégralOsborne, Craig. Measuring the rate constant and secondary a-deuterium kinetic isotope effect for the SN2 reaction between para-nitrobenzyl choride and cyanide ion in 15% aqueous DMSO. Sudbury, Ont : Laurentian University, 1996.
Trouver le texte intégralF, Cook Paul, dir. Enzyme mechanism from isotope effects. Boca Raton : CRC Press, 1991.
Trouver le texte intégralE, Buncel, et Saunders William Hundley 1926-, dir. Heavy atom isotope effects. Amsterdam : Elsevier, 1992.
Trouver le texte intégralBruce, Cook. The Feasibility of measuring the rate constant and secondary [alpha]-deuterium kinetic isotope effect for the Sn2 reaction between sodium phenoxide and benzyl chloride at low concentrations of phenoxide ion. Sudbury, Ont : Laurentian University, 1995.
Trouver le texte intégralE, Buncel, et Lee C. C. 1924-, dir. Secondary and solvent isotope effects. Amsterdam : Elsevier, 1987.
Trouver le texte intégralBuchachenko, A. L. Magnetic isotope effect in chemistry and biochemistry. Hauppauge, NY : Nova Science Publishers, 2009.
Trouver le texte intégralAmnon, Kohen, et Limbach Hans-Heinrich, dir. Isotope effects in chemistry and biology. Boca Raton : Taylor & Francis, 2006.
Trouver le texte intégralIkeda, Glenn Kazuo. Kinetic isotope effects in the fragmentation of N1'-methyl-2-(1-hydroxybenzyl)thiamin. Ottawa : National Library of Canada, 2003.
Trouver le texte intégralChapitres de livres sur le sujet "Isotope kinetic effect"
Kobayashi, Kensei. « Kinetic Isotope Effect ». Dans Encyclopedia of Astrobiology, 1337. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_5240.
Texte intégralKobayashi, Kensei. « Kinetic Isotope Effect ». Dans Encyclopedia of Astrobiology, 1. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_5240-1.
Texte intégralWerner, Roland A., et Marc-André Cormier. « Isotopes—Terminology, Definitions and Properties ». Dans Stable Isotopes in Tree Rings, 253–89. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92698-4_8.
Texte intégralScheer, Milton D. « A Kinetic Isotope Effect in the Thermal Dehydration of Cellobiose ». Dans Fundamentals of Thermochemical Biomass Conversion, 89–94. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4932-4_5.
Texte intégralVanoni, M. A., K. K. Wong et J. S. Blanchard. « Kinetic isotope effect studies on yeast, spinach and human erythrocyte glutathione reductases ». Dans Flavins and Flavoproteins 1987, sous la direction de D. E. Edmondson et D. B. McCormick, 55–58. Berlin, Boston : De Gruyter, 1987. http://dx.doi.org/10.1515/9783110884715-010.
Texte intégralShackelford, Scott A. « Mechanistic Investigations of Condensed Phase Energetic Material Decomposition Processes Using the Kinetic Deuterium Isotope Effect ». Dans Chemistry and Physics of Energetic Materials, 413–32. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2035-4_18.
Texte intégralWolfsberg, Max, W. Alexander Van Hook et Piotr Paneth. « Kinetic Isotope Effects on Chemical Reactions ». Dans Isotope Effects, 313–42. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2265-3_10.
Texte intégralBagshaw, Clive R. « Kinetic Isotope Effects ». Dans Encyclopedia of Biophysics, 1–3. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_58-1.
Texte intégralBagshaw, Clive R. « Kinetic Isotope Effects ». Dans Encyclopedia of Biophysics, 1200–1201. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_58.
Texte intégralWolfsberg, Max, W. Alexander Van Hook et Piotr Paneth. « Kinetic Isotope Effects Continued : Variational Transition State Theory and Tunneling ». Dans Isotope Effects, 181–202. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2265-3_6.
Texte intégralActes de conférences sur le sujet "Isotope kinetic effect"
Jiang, Clancy Zhijian, Itay Halevy et Nicholas Tosca. « Kinetic Isotope Effect of C in Siderite Growth at 298.15 K ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1191.
Texte intégralOber, Douglas, Mitchio Okumura et TzuLing Chen. « SINGLE SUBSTITUTION KINETIC ISOTOPE EFFECT MEASUREMENTS FOR CH4 + O(1D) USING CAVITY RING-DOWN SPECTROSCOPY ». Dans 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois : University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.fb09.
Texte intégralJiang, Clancy Zhijian, Itay Halevy et Nicholas Tosca. « Kinetic isotope effect in siderite growth ; an abiotic origin for depleted δ13C-siderite in banded iron formations. » Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4155.
Texte intégralOber, Douglas, Mitchio Okumura, THINH Bui, LINHAN SHEN et TzuLing Chen. « SINGLE SUBSTITUTION KINETIC ISOTOPE EFFECT MEASUREMENTS FOR CH<sub>4</sub> ; + O(<sup>1</sup>D) USING CAVITY RING-DOWN SPECTROSCOPY ». Dans 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois : University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.wc03.
Texte intégralLee, Jin-Ha, Mamoru Nishimoto, Masayuki Okuyama, Haruhide Mori, Atsuo Kimura, Doman Kim, Masao Ohguchi et Seiya Chiba. « ALPHA-SECONDARY DEUTERIUM KINETIC ISOTOPE EFFECTS FOR HYDROLYSIS OF TREHALOSE BY TREHALASE ». Dans XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.731.
Texte intégralMehboob, Khurram, et Mohammad S. Aljohani. « Effect of Spray System on in Containment Fission Product Washout During In-Vessel Release Phase ». Dans 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66056.
Texte intégralChew, Kathryn, Patrick Vaccaro et Zachary Vealey. « VIBRATIONALLY-RESOLVED KINETIC ISOTOPE EFFECTS IN THE PROTON-TRANSFER DYNAMICS OF GROUND-STATE TROPOLONE ». Dans 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois : University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.ti11.
Texte intégralLobyshev, V. I. « PROSPECTS FOR THE USE OF ISOTOPE-MODIFIED WATER IN BIOLOGY AND MEDICINE ». Dans NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.87-91.
Texte intégralUlrich, Robert, Rachel Han, Jamie Lucarelli, Julia Campbell, Abbas Hakim, Shayleen Singh, Justin Ries, Aradhna Tripati et Robert Eagle. « Coupled Δ47–Δ48 clumped isotope analysis indicates origins of kinetic isotope effects in cultured biogenic marine carbonates ». Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7851.
Texte intégralSchwab, Lorenz, Niklas Gallati, David McLagan, Harald Biester, Stephan Kraemer et Jan Wiederhold. « Kinetic versus Equilibrium Mercury Isotope Effects During Homogenous and Surface Catalyzed Mercury(II) Reduction by Iron(II) ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11919.
Texte intégralRapports d'organisations sur le sujet "Isotope kinetic effect"
Chang, Paul. Theoretical calculations of kinetic isotope effects. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.785.
Texte intégralBrown, Gilbert M., Thomas J. Meyer et Bruce A. Moyer. Utilization of Kinetic Isotope Effects for the Concentration of Tritium. Office of Scientific and Technical Information (OSTI), juin 2000. http://dx.doi.org/10.2172/827388.
Texte intégralBrown, Gilbert M., Thomas j. Meyer et Bruce A. Moyer. Utilization of Kinetic Isotope Effects for the Concentration of Tritium. Office of Scientific and Technical Information (OSTI), juin 1999. http://dx.doi.org/10.2172/827393.
Texte intégralBrown, Gilbert M., et Thomas J. Meyer. UTILIZATION OF KINETIC ISOTOPE EFFECTS FOR THE CONCENTRATION OF TRITIUM. Office of Scientific and Technical Information (OSTI), décembre 2001. http://dx.doi.org/10.2172/827401.
Texte intégralBrown, G. M., et T. J. Meyer. Utilization of kinetic isotope effects for the concentration of tritium. 1997 annual progress report. Office of Scientific and Technical Information (OSTI), septembre 1997. http://dx.doi.org/10.2172/13743.
Texte intégralBrown, G. M., et T. J. Meyer. Utilization of kinetic isotope effects for the concentration of tritium. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), juin 1998. http://dx.doi.org/10.2172/13744.
Texte intégral