Littérature scientifique sur le sujet « Jet engines ; Jet propulsion »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Jet engines ; Jet propulsion ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Jet engines ; Jet propulsion"
GĘCA, Michał, Zbigniew CZYŻ et Mariusz SUŁEK. « Diesel engine for aircraft propulsion system ». Combustion Engines 169, no 2 (1 mai 2017) : 7–13. http://dx.doi.org/10.19206/ce-2017-202.
Texte intégralOPARA, Tadeusz. « History and future of turbine aircraft engines ». Combustion Engines 127, no 4 (1 novembre 2006) : 3–18. http://dx.doi.org/10.19206/ce-117335.
Texte intégralBERBENTE, Sorin, Irina-Carmen ANDREI, Gabriela STROE et Mihaela-Luminita COSTEA. « Topical Issues in Aircraft Health Management with Applications to Jet Engines ». INCAS BULLETIN 12, no 1 (1 mars 2020) : 13–26. http://dx.doi.org/10.13111/2066-8201.2020.12.1.2.
Texte intégralŻokowski, Mariusz, Paweł Majewski et Jarosław Spychała. « Detection Damage in Bearing System of Jet Engine Using the Vibroacoustic Method ». Acta Mechanica et Automatica 11, no 3 (1 septembre 2017) : 237–42. http://dx.doi.org/10.1515/ama-2017-0037.
Texte intégralLee, Incheol, Yingzhe Zhang et Dakai Lin. « Empirical estimation of engine-integration noise for high bypass ra-tio turbofan engines ». INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no 2 (1 août 2021) : 4511–19. http://dx.doi.org/10.3397/in-2021-2723.
Texte intégralDenning, R. M., et N. A. Mitchell. « Trends in Military Aircraft Propulsion ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 203, no 1 (janvier 1989) : 11–23. http://dx.doi.org/10.1243/pime_proc_1989_203_049_01.
Texte intégralOsei-Agyemang, Eric, Jean-Francois Paul, Romain Lucas, Sylvie Foucaud et Sylvain Cristol. « Stability, equilibrium morphology and hydration of ZrC(111) and (110) surfaces with H2O : a combined periodic DFT and atomistic thermodynamic study ». Physical Chemistry Chemical Physics 17, no 33 (2015) : 21401–13. http://dx.doi.org/10.1039/c5cp03031e.
Texte intégralCHIESA, Sergio, Marco FIORITI et Roberta FUSARO. « POSSIBLE HYBRID PROPULSION CONFIGURATION FOR TRANSPORT JET AIRCRAFT ». Aviation 20, no 3 (29 septembre 2016) : 145–54. http://dx.doi.org/10.3846/16487788.2016.1200849.
Texte intégralWoods, Robert O. « Power to the Glider ». Mechanical Engineering 130, no 08 (1 août 2008) : 46–48. http://dx.doi.org/10.1115/1.2008-aug-6.
Texte intégralDanko, Gene A. « By Leaps and Bounds : The Realization of Jet Propulsion through Innovative Materials and Design ». Key Engineering Materials 380 (mars 2008) : 135–46. http://dx.doi.org/10.4028/www.scientific.net/kem.380.135.
Texte intégralThèses sur le sujet "Jet engines ; Jet propulsion"
Sivapragasam, M. « Numerical and experimental investigations on multiple air jets in counterflow for generating aircraft gas turbine engine inlet flow distortion patterns ». Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/0ad1d0c2-6693-4c6e-9224-5a2237862074/1.
Texte intégralErickson, Robert R. « A numerical investigation on the influence of engine shape and mixing processes on wave engine performance ». Available online, Georgia Institute of Technology, 2005, 2004. http://etd.gatech.edu/theses/available/etd-01032005-100101/unrestricted/erickson%5Frobert%5Fr%5F200505%5Fphd.pdf.
Texte intégralBen T. Zinn, Committee Chair ; Jeff Jagoda, Committee Member ; Suresh Menon, Committee Member ; Tim Lieuwen, Committee Member ; Rick Gaeta, Committee Member. Vita. Includes bibliographical references.
Rodrigo, Clinton. « Basic Comparison of Three Aircraft Concepts : Classic Jet Propulsion, Turbo-Electric Propulsion and Turbo-Hydraulic Propulsion ». Master's thesis, Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. http://d-nb.info/1204558019.
Texte intégralChaudhry, Udey. « Tip leakage flow, heat transfer and blade lifting in a jet engine turbine ». Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/94499.
Texte intégralM.S.
Krolak, Matthew Joseph. « Optimization of a magnetoplasmadynamic arc thruster ». Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-042607-155701/.
Texte intégralWeyer, Robert Bernhard. « Investigation of the functioning of a liquefied-gas micro-satellite propulsion system ». Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49765.
Texte intégralENGLISH ABSTRACT: The focus of this thesis is on the investigation of the functioning of a liquefied-gas thruster. Such a thruster could be used to provide secondary propulsion to a microsatellite in orbit. A general overview of the need for thrusters in micro-satellites is put forward in the introduction. Motivation for deciding to investigate a liquefied-gas system is presented. Recent developments in the field of micro-satellites are discussed as well as their relevance to the project undertaken. Fundamental background theory relevant to the engineering problems associated with the development and analysis of such a system is also presented. Computer programs were written to simulate such a liquefied-gas thruster system. The experimental work carried out to analyse the system from a practical view-point is documented. Attention is also given to the measurement and calibration techniques used to obtain experimental data. One-dimensional fully explicit transient mathematical models of the thruster system were developed to model the system using both compressed air and butane as propellants. These models were incorporated into computer programs used to simulate the transient behaviour of the system. Although it is intended to use butane as the propellant onboard a satellite, the reason for modelling and simulating a system using compressed air is because air is a convenient fluid to work with from both a theoretical and practical point of view. An experimental model of a thruster system was designed, built and tested using air and butane as propellants. Most of the model was built using perspex to allow for the observation of the two-phase behaviour of the propellant inside the system. Locally purchased components were used for the solenoid and fill valves. Readily available butane lighter fluid was used for butane testing. Self-made heating elements were used to provide heat input to the propellant. Testing was done at different back pressures ranging from 100 kPa down to 20 kPa in a vacuum chamber. Good comparison between theoretical and experimental results was obtained for air. Theoretical results for peak thrusts tended to over predict experimental results by approximately 15 % for a system exhausting to a pressure of 100 kPa. Peak thrusts as high as 0.2 N were obtained for vacuum tests conducted at an absolute pressure of 20 kPa. Peak thrusts of approximately 50 mN were achieved for experimental testing III atmospheric conditions using butane with a starting pressure of between 270 and 290 kPa. Typical average thrusts of between 20 mN and 30 mN were noted for butane testing with initial pressure of between 200 to 300 kPa. Peak thrusts of over 0.1 N were observed for vacuum testing at an absolute pressure of 20 kPa. An equation to correlate the experimentally determined average thrust as a function of pulse duration and starting pressure was developed. This correlated most of the experimental data to within ±25 %. Theoretical results for butane testing are able to predict peak thrusts within approximately 20 % for starting pressures in the range of 200 to 300 kPa. Since the project was an exploratory investigation into a liquefied-gas thruster, some additional aspects relating to such systems were also given attention. The effect of liquid propellant motion or sloshing was considered and recommendations regarding the design and placement of the propellant tanks were made. The use of heat pipes as an alternative to electrical heating elements was investigated and some elementary design aspects are presented graphically. The management of the liquid propellant using surface tension devices was examined qualitatively. Recommendations relating to future projects in the field of simple, low-cost propulsion systems for micro-satellites are put forward. More specifically these recommendations are with regard to: thermo-fluid modelling of the propellant, future experimental work to be done, techniques to measure small thrusts and vacuum chamber testing.
AFRIKAANSE OPSOMMING: Die tesis ondersoek die funksionering van 'n vervloeidegas stuwer. So 'n stuwer kan gebruik word om sekondêre aandrywing aan 'n mikro-satelliet in 'n wentelbaan te verskaf. 'n Algemene oorsig oor die behoeftes van stuwers vir mikro-satelliete word voortgesit in die inleiding. Redes vir die gebruik van 'n vervloeidegas stuwer word bespreek. Onlangse ontwikkelinge in die veld van mikro-satelliet aandrywing word bespreek asook die toepaslikheid daarvan. Fundamentele teoretiese agtergrond verbonde aan die ontwikkeling en analise van so 'n stuwer stelsel word ook gegee. Rekenaarprogramme is geskryf om die gedrag van so 'n stuwer stelsel te simuleer. Eksperimentele werk is gedoen om die stelsel vanuit 'n praktiese oogpunt te analiseer. Aandag word ook gegee aan die metings- en kalibrasietegnieke soos toegepas vir die eksperimentele werk. Eendimensionele volle eksplisiete wiskundige modelle is ontwikkelom die oorgangsgedrag van die stuwer-stelsel te simuleer met beide lug en butaan as dryfmiddel. Hierdie modelle is geïnkorporeer in die rekenaar programme om die stuwer stelsel te simuleer. Alhoewel dit beoog word om butaan as die dryfmiddel aan boord die satelliet te gebruik, is lug ook gebruik vir simulasie weens sy gerieflikheid as 'n vloeier uit beide 'n teoretiese en 'n praktiese oogpunt. 'n Eksperimentele model van die stuwer stelsel is ontwerp, gebou en getoets met beide lug en butaan as dryfmiddels. Die model is hoofsaaklik uit perspex gebou sodat die twee-fase gedrag van die butaan uitgebeeld kon word. Vrylik beskikbare butaan aansteker vloeistof IS gebruik VIr butaan toetsing. Selfvervaardigde verhittingselemente is gebruik om hitte aan die dryfmiddel te verskaf. Toetse is gedoen deur verskeie omgewingsdrukke varieërend van 100 kPa af tot 20 kPa in 'n vakuumtenk te gebruik. Goeie ooreenstemming tussen die teoretiese en eksperimentele resultate vir die toetsing van lug is verkry. Die teoretiese resultate neig om die piek stukrag 15 % hoër te voorspel as die eksperimentele resultate vir 'n stelsel wat tot 'n omgewingsdruk van 100 kPa by die uitlaat. Piek stukragte van meer as 0.2 N is gekry vir vakuum toetse wat gedoen is by 'n omgewingsdruk van 20 kPa. Tydens eksperimentele toetsing met butaan teen 'n aanvanklike druk tussen 270 en 290 kPa, in atmosferiese toestande, is piek stukragte van ongeveer 50 mN behaal. Tipiese gemiddelde stukragte van tussen 20 en 30 mN is waargeneem vir butaan toetsing teen 'n aanvanklike druk tussen 200 en 300 kPa. Piek stukragte van meer as 0.1 N is behaal vir vakuum toetse met 'n absolute druk van 20 kPa. 'n Vergelyking om die gemiddelde stukrag, wat eksperimenteel bepaal is, as 'n funksie van puls tydsduur en aanvanklike druk te korreleer, is ontwikkel. Die meeste eksperimentele data se afwyking van die korrelasie-vergelyking was minder as 25 %. Teoretiese resultate vir butaantoetse het piek stukragte binne 20 % van die eksperimenteel metings korrek voorspel vir aanvanklike drukke tussen 200 tot 300 kPa. Weens die feit dat die projek 'n oorhoofse ondersoek in In vervloeidegas stuwer behels, is aandag ook gegee aan addisionele aspekte wat verband hou met sulke stelsels. Die effek van die vloeistof-dryfmiddel se onstabiele beweging in sy tenke is in ag geneem en voorstelle vir die ontwerp en plasing van die dryfmiddel tenke is gemaak. Die gebruik van hitte pype as 'n alternatief vir elektriese verhittingselemente is ondersoek. Verskeie ontwerp aspekte word grafies voorgestel. Die bestuur van die vloeistof-dryfmiddel deur van oppervlak spannings apparaat gebruik te maak, is kwalitatief ondersoek. Voorstelle vir verdere navorsing in die veld van eenvoudige, lae-koste stuwer stelsels vir mikro-satelliete is gemaak. Meer spesifiek is hierdie voorstelle gerig op die termo-vloeidinamiese modellering van die dryfmiddel, verdere eksperimentele navorsing, tegnieke om klein stukragte te meet en vakuumtenk toetse.
Jouot, Fabien. « Etude de la détonation dans un jet diphasique cryogénique GH2-LOx : contribution aux études sur les moteurs à onde de détonation ». Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2055/document.
Texte intégralWithin the general framework of detonation engines for space propulsion purpose, this work aims to study direct initiation and propagation of detonation in a cryogenic twophase GH2-LO2 mixture. First chapter is constituted by theoretical basis and state of art on atomization processes in liquid jets, then on gas-phase detonation, and finally on two-phase detonation. Second chapter describes experimental set-up and associate techniques in order to carry out two-phase jet characterization and detonation study. Third chapter is dedicated to the study of droplet size distribution of non reactive two-phase GHe-LO2 jet in a quartz tube. Thus, a droplet size map is constituted through the whole tube, for different helium injection speeds. These results are compared with theoretical study dealing with vaporization and movement of a droplet and with numerical simulations on jet behavior close to the injector. Fourth chapter presents results of a detonation study of a reactive GH2-LO2 two-phase mixture in a semi-open tube. Detonation is studied as a function of following parameters: initiation energy, spark initiation device location along the tube, global equivalence ratio. Velocity, peak pressure and three-dimension structure detonation are the main data collected to study two-phase detonation phenomena. A theoretical study of detonation characteristics brings additional information on detonation at low temperature (100 K)
Becker, William J. « Dynamic surface temperature measurement on the first stage turbine blades in a turbofan jet engine test rig ». Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43743.
Texte intégralMaster of Science
Benyo, Theresa L. « Analytical and Computational Investigations of a Magnetohydrodynamic (MHD) Energy-Bypass System for Supersonic Turbojet Engines to Enable Hypersonic Flight ». Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1369153719.
Texte intégralKhanna, Yash. « Conceptual design and development of thermal management system for hybrid electric aircraft engine. : A study to develop a physical model and investigate the use of Mobil Jet Oil II as coolant for aircraft electrical propulsion under different scenarios and time horizons ». Thesis, Mälardalens högskola, Framtidens energi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-46612.
Texte intégralLivres sur le sujet "Jet engines ; Jet propulsion"
Elements of gas turbine propulsion. Reston, Va : American Institute of Aeronautics and Astronautics, 2005.
Trouver le texte intégralHünecke, Klaus. Jet engines : Fundamentals of theory, design, and operation. Osceola, WI, USA : Motorbooks International, 1997.
Trouver le texte intégralJet engines : Fundamentals of theory, design, and operation. Shrewsbury, England : Airlife, 1997.
Trouver le texte intégralElements of propulsion : Gas turbines and rockets. Reston, Va : American Institute of Aeronautics and Astronautics, 2006.
Trouver le texte intégralJet propulsion : A simple guide to the aerodynamic and thermodynamic design and performance of jet engines. Cambridge : Cambridge University Press, 1997.
Trouver le texte intégralPadilla, Carlos E. Optimizing jet transport efficiency : Performance, operations, and economics. New York : McGraw-Hill, 1996.
Trouver le texte intégralJet propulsion : A simple guide to the aerodynamics [i.e. aerodynamic] and thermodynamic design and performance of jet engines. 2e éd. Cambridge : Cambridge University Press, 2003.
Trouver le texte intégralRoy, Langton, dir. Gas turbine propulsion systems. Chichester, West Sussex : Wiley, 2011.
Trouver le texte intégralPowell, A. G. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot. [Washington, DC] : National Aeronautics and Space Administration, 1985.
Trouver le texte intégralChapitres de livres sur le sujet "Jet engines ; Jet propulsion"
El-Sayed, Ahmed F. « Performance Parameters of Jet Engines ». Dans Fundamentals of Aircraft and Rocket Propulsion, 161–218. London : Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6796-9_3.
Texte intégralPirumov, Ul’yan G., et Gennadi S. Roslyakov. « Nozzles of Jet Engines ». Dans Gas Flow in Nozzles, 143–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-86790-3_5.
Texte intégralDeSouza, Shaun, et Corin Segal. « Supercritical Coaxial Jet Disintegration ». Dans High-Pressure Flows for Propulsion Applications, 157–81. Reston, VA : American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0157.0182.
Texte intégralBenford, Gregory. « Stability of Magnetic Jet Equilibria ». Dans Astrophysical Jets and Their Engines, 205–10. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3927-1_17.
Texte intégralLieser, J. A., et I. Wallbruch. « CFD Calculation of Isolated Jet Engines with Emphasis on Jet Mixing ». Dans Notes on Numerical Fluid Mechanics (NNFM), 282–90. Wiesbaden : Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-663-10901-3_37.
Texte intégralDrouin, Brian J. « Rotational Spectroscopy at the Jet Propulsion Laboratory ». Dans Remote Sensing of the Atmosphere for Environmental Security, 257–69. Dordrecht : Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5090-9_16.
Texte intégralKapoor, R. C. « General Relativistic Effects on Collimation of a Jet ». Dans Astrophysical Jets and Their Engines, 245–46. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3927-1_21.
Texte intégralGuderley, Helga E., et Isabelle Tremblay. « Escape Responses by Jet Propulsion in Scallops 1 ». Dans Physiology of Molluscs, 189–217. New Jersey : Apple Academic Press, Inc., 2016- : Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781315207124-6.
Texte intégralDe, Ashoke, Gerasimos Sarras et Dirk Roekaerts. « Transported PDF Modeling of Jet-in-Hot-Coflow Flames ». Dans Sustainable Development for Energy, Power, and Propulsion, 439–62. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_17.
Texte intégralMatheis, Jan, Hagen Müller, Stefan Hickel et Michael Pfitzner. « Large-Eddy Simulation of Cryogenic Jet Injection at Supercritical Pressures ». Dans High-Pressure Flows for Propulsion Applications, 531–70. Reston, VA : American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0531.0570.
Texte intégralActes de conférences sur le sujet "Jet engines ; Jet propulsion"
Mauton, Jose, et Jose Mauton. « Miniature jet engines applied to propulsion education ». Dans 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3279.
Texte intégralCHRYSANTHOU, A., A. JONES et B. PORTER. « Identification of multivariable models of jet engines ». Dans 26th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1874.
Texte intégralTaghavi, Ray, et Saeed Farokhi. « Using Jet Engine Simulator in Propulsion Education ». Dans ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4963.
Texte intégralKim, Chun, Minsoo Yoon, Soo Yang et Dae Lee. « An altitude test facility for small jet engines ». Dans 37th Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3680.
Texte intégralALCOCK, JOSEPH, et STEVEN HAGAR. « Transferring jet engine diagnostic and control technology to liquid propellant rocket engines ». Dans 25th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2851.
Texte intégralGastineau, Zane, et Gemunu Happawana. « Robust model-based control for jet engines ». Dans 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3752.
Texte intégralJONES, A., B. PORTER et A. CHRYSANTHOU. « Design of digital self-selecting multivariable controllers for jet engines ». Dans 26th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1875.
Texte intégralSielemann, Michael, Anand Pitchaikani, Nithish Selvan et Majed Sammak. « The Jet Propulsion Library : Modeling and simulation of aircraft engines ». Dans The 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017. Linköping University Electronic Press, 2017. http://dx.doi.org/10.3384/ecp17132909.
Texte intégralWickman, John. « In-situ Mars rocket and jet engines burning carbon dioxide ». Dans 35th Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2409.
Texte intégralMahler, Frederic, et Esther Boyes. « The application of brush seals in large commercial jet engines ». Dans 31st Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2617.
Texte intégralRapports d'organisations sur le sujet "Jet engines ; Jet propulsion"
Yost, Douglas M., et Adam C. Brandt. Propulsion and Power Rapid Response Research and Development (R&D) Support. Delivery Order 0011 : Advanced Propulsion Fuels R&D, Subtask : Evaluation of 50/50 Hydroprocessed Renewable Jet Fuel and JP8 in the Ford 6.7L High-Pressure Common Rail Design Engine. Fort Belvoir, VA : Defense Technical Information Center, décembre 2012. http://dx.doi.org/10.21236/ada583392.
Texte intégralFerguson, Frederick, Mark Schulz et Mannur Sundaresan. North Carolina Agricultural and Technical State University Jet Propulsion Laboratory. Fort Belvoir, VA : Defense Technical Information Center, février 2003. http://dx.doi.org/10.21236/ada411508.
Texte intégralHepner, David J., Michael J. Hollis et Charles E. Mitchell. Yawsonde Technology for the Jet Propulsion Laboratory (JPL) Free Flying Magnetometer (FFM) Program. Fort Belvoir, VA : Defense Technical Information Center, juillet 1998. http://dx.doi.org/10.21236/ada352980.
Texte intégralMandeles, Mark D. The Development of the B-52 and Jet Propulsion : A Case Study in Organizational Innovation. Fort Belvoir, VA : Defense Technical Information Center, mars 1998. http://dx.doi.org/10.21236/ada341727.
Texte intégralShumway, L. A. Characterization of Jet Engine Exhaust Particulates for the F404, F118, T64, and T58 Aircraft Engines. Fort Belvoir, VA : Defense Technical Information Center, mars 2002. http://dx.doi.org/10.21236/ada405470.
Texte intégralMezic, Igor. Dynamics and Control of Instabilities and Mixing in Complex Fluid Flows ; Applications to Jet Engines. Fort Belvoir, VA : Defense Technical Information Center, janvier 2001. http://dx.doi.org/10.21236/ada389184.
Texte intégralSkone, Timothy J., David T. Allen, Charles Allport, Kristopher Atkins, Daniel Baniszewski, Dong Gu Choi, Joyce S. Cooper et al. Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels : F-T Based SPK-1 Case Study (Report). Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1504467.
Texte intégralSkone, Timothy J., et William E. Harrison, III. Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels : Fischer Tropsch Based SPK-1 Case Study (Model). Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1504468.
Texte intégralChehroudi, B., D. Talley et E. Coy. Initial Growth Rate and Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas Turbine, and Diesel Engines. Fort Belvoir, VA : Defense Technical Information Center, novembre 1998. http://dx.doi.org/10.21236/ada409800.
Texte intégralKlein, James K. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Delivery Order 0011 : Production Demonstration and Laboratory Evaluation of R-8 and R-8X Hydroprocessed Renewable Jet (HRJ) Fuel for the DoD Alternative Fuels Program. Fort Belvoir, VA : Defense Technical Information Center, mai 2010. http://dx.doi.org/10.21236/ada536935.
Texte intégral