Littérature scientifique sur le sujet « Jet engines ; Jet propulsion »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Jet engines ; Jet propulsion ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Jet engines ; Jet propulsion"

1

GĘCA, Michał, Zbigniew CZYŻ et Mariusz SUŁEK. « Diesel engine for aircraft propulsion system ». Combustion Engines 169, no 2 (1 mai 2017) : 7–13. http://dx.doi.org/10.19206/ce-2017-202.

Texte intégral
Résumé :
Stricter requirements for power in engines and difficulties in fueling gasoline engines at the airport make aircraft engine manufac-turers design new engines capable of combusting fuel derived from JET-A1. New materials used in compression-ignition engines enable weight reduction, whereas the technologies of a Common Rail system, supercharging and 2-stroke working cycle enable us to increasethe power generated by an engine of a given displacement. The paper discusses the parameters of about 40 types of aircraft compression ignition engines. The parameters of these engines are compared to the spark-ignition Rotax 912 and the turboprop. The paper also shows trends in developing aircraft compression-ignition engines.
Styles APA, Harvard, Vancouver, ISO, etc.
2

OPARA, Tadeusz. « History and future of turbine aircraft engines ». Combustion Engines 127, no 4 (1 novembre 2006) : 3–18. http://dx.doi.org/10.19206/ce-117335.

Texte intégral
Résumé :
This paper discusses stages of development of air propulsion from piston engines up to three-rotor turbine ones. Limitations in speed and altitude of flight, caused by traditional system of a piston engine and an airscrew, became an impulse to conduct research on jet propulsion. Accomplishments of the designers of the first jet-propelled engines: F. Whitle and H. von Ohain are a reflection of rivalry in this field. In the second half of the 20th centur y turbine propulsion (turbojet, turboprop and helicopter engines) dominated air force and civil aviation. In 1960 the age of turbofans began, owing to better operating properties and electronic and digital systems of automatic regulation. Further development of turbine engines is connected with application of qualitatively new materials (particularly composites), optimization of the shape of compressor and turbine blades and technologies of their production. The paper discusses design changes decreasing the destructive effects of foreign matter suction and indicates the possibility of increasing the maneuverability of airplanes by thrust vectoring. Finally, development prospects of turbine propulsion are analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
3

BERBENTE, Sorin, Irina-Carmen ANDREI, Gabriela STROE et Mihaela-Luminita COSTEA. « Topical Issues in Aircraft Health Management with Applications to Jet Engines ». INCAS BULLETIN 12, no 1 (1 mars 2020) : 13–26. http://dx.doi.org/10.13111/2066-8201.2020.12.1.2.

Texte intégral
Résumé :
Aircraft Health Management Technology for jet engines represents a very important problem, since it develops a large impact on reducing the engine life cycle costs, improving the fuel efficiency, increasing the engines durability and life cycle. This technology is high-end and, in order to enable an improved level of performance that far exceeds the current one, propulsion systems must comply with terms of reducing harmful emissions, maximizing fuel efficiency and minimizing noise, while improving system’s affordability and safety. Aircraft Health Management Technology includes multiple goals of aircraft propulsion control, diagnostics problems, prognostics realized, and their proper integration in control systems. Modern control for Aircraft Health Management Technology is based on improved control techniques and therefore provides improved aircraft propulsion system performances. The study presented in this paper approaches a new concept, of attractive interest currently, that is the intelligent control; in this context, the Health Management of jet engines is crucial, being focused on engine controllers which are designed to match certain operability and performance constraints. Automated Engine Health Management has the capacity to significantly reduce the maintenance effort and propulsion systems’ logistical footprint. In order to prioritize and resolve problems in the field of support engineering there are required more detailed data on equipment reliability and failures detection and management; the equipment design, operations and maintenance procedures and tooling are also very important.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Żokowski, Mariusz, Paweł Majewski et Jarosław Spychała. « Detection Damage in Bearing System of Jet Engine Using the Vibroacoustic Method ». Acta Mechanica et Automatica 11, no 3 (1 septembre 2017) : 237–42. http://dx.doi.org/10.1515/ama-2017-0037.

Texte intégral
Résumé :
Abstract The article discusses typical, operational systems for monitoring vibrations of jet engines, which constitute the propulsion of combat aircraft of the Armed Forces of the Republic of Poland. After that, the paper presents the stage of installing vibration measuring sensors in the direct area of one of the jet engine bearings, which is a support system for its rotor. The article discusses results of carried out analyses of data gathered during tests of the engine in the conditions a jet engine test bed. Results of detecting damages to the bear-ing, using sensors built in the direct area will be presented.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Incheol, Yingzhe Zhang et Dakai Lin. « Empirical estimation of engine-integration noise for high bypass ra-tio turbofan engines ». INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no 2 (1 août 2021) : 4511–19. http://dx.doi.org/10.3397/in-2021-2723.

Texte intégral
Résumé :
To investigate the impact of installation on jet noise from modern high-bypass-ratio turbofan engines, a model-scale noise experiment with a jet propulsion system and a fuselage model in scale was conducted in the anechoic wind tunnel of ONERA, CEPRA 19. Two area ratios (an area of the secondary nozzle over an area of the primary nozzle), 5 and 7, and various airframe configurations such as wing positions relative to the tip of the engine nacelle and flap angles, were considered. Based on the analysis of experimental data, an empirical model for the prediction of engine installation noise was proposed. The model comprises two components: one is the interaction be-tween the jet and the pressure side of the wing, and the other is the interaction between the jet and the flap tip. The interaction between the jet and the pressure side of the wing contributes to the noise at the low frequencies (≤ 1.5 kHz), and the interaction between the jet and the flap tip con-tributes to the noise at the high frequencies. The proposed model showed a good agreement with the experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Denning, R. M., et N. A. Mitchell. « Trends in Military Aircraft Propulsion ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 203, no 1 (janvier 1989) : 11–23. http://dx.doi.org/10.1243/pime_proc_1989_203_049_01.

Texte intégral
Résumé :
The major factors determining the choice of engine cycle for a combat aircraft are the requirements of the design mission and those of aircraft speed and agility. The requirement for jet-borne flight in short take-off vertical landing (STOVL) aircraft imposes further demands on cycle and configuration. The changing nature of combat aircraft requirements is the reason for changes in engine design. Specific thrust is shown to be the major parameter defining engine suitability for a particular role. An examination of mixed turbofan characteristics shows that specific thrust is also the key to understanding the relationships between engine characteristics. The future development of combat engines is discussed, in particular the implications of stoichiometric limits on cycle temperatures and the benefits of variable cycle engines are examined. Recent work on advanced STOVL (ASTOVL) aircraft is reviewed and aircraft/engine concepts designed to meet the requirements of the role are assessed. Experience shows that the technology for these advanced engines must be fully demonstrated before production to minimize the risks and costs of the development programme.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Osei-Agyemang, Eric, Jean-Francois Paul, Romain Lucas, Sylvie Foucaud et Sylvain Cristol. « Stability, equilibrium morphology and hydration of ZrC(111) and (110) surfaces with H2O : a combined periodic DFT and atomistic thermodynamic study ». Physical Chemistry Chemical Physics 17, no 33 (2015) : 21401–13. http://dx.doi.org/10.1039/c5cp03031e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

CHIESA, Sergio, Marco FIORITI et Roberta FUSARO. « POSSIBLE HYBRID PROPULSION CONFIGURATION FOR TRANSPORT JET AIRCRAFT ». Aviation 20, no 3 (29 septembre 2016) : 145–54. http://dx.doi.org/10.3846/16487788.2016.1200849.

Texte intégral
Résumé :
This research is aimed at studying the possible advantages of installing, for a hybrid propulsion aircraft, electric motors and related propellers into the dedicated supplementary nacelles. This innovative solution is different from the configuration, already studied for a regional turboprop (Chiesa et al.2013), in which the electric motors are in the same nacelles of the internal combustion engines. As it has been expected, it offers the advantages of avoiding mechanical links between the two units and, more importantly, can also be applied to jet aircraft. In fact, the main contribution of electric motors is expected during ground operations, take-off and descent phases (i.e. at low speed), in which it can be useful to integrate the propellers or even substitute the jet engines with them. At high speed, the propellers, of course, are configured in order to reduce drag. When considering the design of a new airliner concept, a preliminary design study is necessary to optimize the location of the supplementary nacelles. The nacelles, which only hold the electrical motor, can also be considered retractable, as is usual for a RAT (Ram Air Turbine). Please note that in the hybrid propulsion context, the RAT function can be clearly allocated to the electric motor, with the advantages of optimizing drag at high speed, taking into account installation problems.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Woods, Robert O. « Power to the Glider ». Mechanical Engineering 130, no 08 (1 août 2008) : 46–48. http://dx.doi.org/10.1115/1.2008-aug-6.

Texte intégral
Résumé :
This article discusses developments in powered sailplane. Jet propulsion clearly demonstrates the future direction of powered sailplanes. Powered glider applies to a new class of aircraft that takes off under their own power, and then, with the power plant stopped and streamlined, behave as true sailplanes. The advent of radio control has allowed model aviation to progress to an almost unbelievable degree. There are now small turbojet engines commercially available that weigh a little over 5 pounds and deliver 40 pounds force of thrust. Jet propulsion clearly demonstrates the future direction of powered sailplanes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Danko, Gene A. « By Leaps and Bounds : The Realization of Jet Propulsion through Innovative Materials and Design ». Key Engineering Materials 380 (mars 2008) : 135–46. http://dx.doi.org/10.4028/www.scientific.net/kem.380.135.

Texte intégral
Résumé :
Innovations in gas turbine engine design and materials are tracked from the earliest days of functional engines to the present. Materials and design are shown to be mutually interdependent, driving engine capability to unprecedented levels of performance with each succeeding product generation.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Jet engines ; Jet propulsion"

1

Sivapragasam, M. « Numerical and experimental investigations on multiple air jets in counterflow for generating aircraft gas turbine engine inlet flow distortion patterns ». Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/0ad1d0c2-6693-4c6e-9224-5a2237862074/1.

Texte intégral
Résumé :
The performance of an aircraft gas turbine engine is adversely affected by the non-uniform or distorted flow in the inlet duct. Inlet flow distortion lowers the surge margin of the engine‟s compression system with surge occurring at much lower pressure ratios at all engine speeds. The compressor and/or engine are subjected to ground tests in the presence of inlet distortion to evaluate its performance. The simplest method of simulating inlet distortion during these tests is by installing a distortion screen ahead of the engine on the test bed. The uniform inlet flow to the compressor becomes nonuniform with total pressure loss after passing through the distortion screen. Though the distortion screens offer a number of significant advantages, they have some disadvantages. The air jet distortion system can alleviate many of the operational disadvantages encountered with the conventional distortion screens. The system consists of a number of air jets arranged in a circumferential array in a plane and issuing opposite to the primary air flow entering the engine. The jets interact with the primary stream and cause a local total pressure loss due to momentum exchange. The individual mass flow rates from the jets can be varied to obtain a required total pressure pattern ahead of the compressor at the Aerodynamic Interface Plane (AIP). A systematic study of the flow field of confined, turbulent, incompressible, axisymmetric jet issuing into counterflow is covered in this research programme. The jet penetration length and the jet width are reduced compared to unconfined counterflow and a linear relationship between the velocity ratio and the jet length ceases to be valid. The flow field of a circular compressible turbulent jet and then a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. For the four jet system the mass flow rates in the four jets were equal in the first part of the study and in the second part they were unequal. The loss in total pressure due to the jet(s) interacting with the counterflow was quantified by a total pressure loss parameter λp0. The total pressure loss increased with increasing mass flow ratio. The total pressure loss distribution was evaluated at several locations behind the jet injector(s). The total pressure non-uniformity quantified by Distortion Index (DI) was found to be highest at a location just downstream of the jet injector and at far downstream locations low values of DI were observed. From the understanding gained with a single jet and four jets in counterflow a methodology was developed to generate a given total pressure distortion pattern at the AIP. The methodology employs computations to obtain the total pressure distortion at the AIP with quasi-one-dimensional inviscid analysis used as a starting point to estimate the mass flow rate in the jets. The inviscid analysis also provides a direction to the iterative procedure to vary the mass flow rate in the jets at the end of each computational step. The methodology is demonstrated to generate a given total pressure distortion pattern using four jets and is further extended to a larger number of jets, twelve and later twenty jets. The total pressure distortion patterns typical of use in aircraft gas turbine engine testing are generated accurately with a smaller number of jets than reported in the literature.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Erickson, Robert R. « A numerical investigation on the influence of engine shape and mixing processes on wave engine performance ». Available online, Georgia Institute of Technology, 2005, 2004. http://etd.gatech.edu/theses/available/etd-01032005-100101/unrestricted/erickson%5Frobert%5Fr%5F200505%5Fphd.pdf.

Texte intégral
Résumé :
Thesis (Ph. D.)--Aerospace Engineering, Georgia Institute of Technology, 2005.
Ben T. Zinn, Committee Chair ; Jeff Jagoda, Committee Member ; Suresh Menon, Committee Member ; Tim Lieuwen, Committee Member ; Rick Gaeta, Committee Member. Vita. Includes bibliographical references.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Rodrigo, Clinton. « Basic Comparison of Three Aircraft Concepts : Classic Jet Propulsion, Turbo-Electric Propulsion and Turbo-Hydraulic Propulsion ». Master's thesis, Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. http://d-nb.info/1204558019.

Texte intégral
Résumé :
Purpose - This thesis presents a comparison of aircraft design concepts to identify the superior propulsion system model among turbo-hydraulic, turbo-electric and classic jet propulsion with respect to Direct Operating Costs (DOC), environmental impact and fuel burn. --- Approach - A simple aircraft model was designed based on the Top-Level Aircraft Requirements of the Airbus A320 passenger aircraft, and novel engine concepts were integrated to establish new models. Numerous types of propulsion system configurations were created by varying the type of gas turbine engine and number of propulsors. --- Findings - After an elaborate comparison of the aforementioned concepts, the all turbo-hydraulic propulsion system is found to be superior to the all turbo-electric propulsion system. A new propulsion system concept was developed by combining the thrust of a turbofan engine and utilizing the power produced by the turbo-hydraulic propulsion system that is delivered via propellers. The new partial turbo-hydraulic propulsion concept in which 20% of the total cruise power is coming from the (hydraulic driven) propellers is even more efficient than an all turbo-hydraulic concept in terms of DOC, environmental impact and fuel burn. --- Research Limitations - The aircraft were modelled with a spreadsheet based on handbook methods and relevant statistics. The investigation was done only for one type of reference aircraft and one route. A detailed analysis with a greater number of reference aircraft and types of routes could lead to other results. --- Practical Implications - With the provided spreadsheet, the DOC and environmental impact can be approximated for any commercial reference aircraft combined with the aforementioned propulsion system concepts. --- Social Implications - Based on the results of this thesis, the public will be able to discuss the demerits of otherwise highly lauded electric propulsion concepts. --- Value - To evaluate the viability of the hydraulic propulsion systems for passenger aircraft using simple mass models and aircraft design concept.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chaudhry, Udey. « Tip leakage flow, heat transfer and blade lifting in a jet engine turbine ». Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/94499.

Texte intégral
Résumé :
An existing Navier-Stokes code (MEFP) was used to calculate developing flow and heat transfer in turbine tip gaps. Successful calculations of the heat transfer to a model turbine blade tip were obtained with a Prandtl mixing length turbulence model. The calculations revealed details of the flow development including recirculation and reattachment on the blade tip surface. The calculated heat transfer distributions were in good agreement with experimental data. A combined solution of the energy equation in the tip gap flow and in the rotor blade tip gave tip temperature distributions. An independent computational study, using the same numerics as MEFP but a separate new computer program, was also performed to investigate the numerical accuracy of heat transfer calculations for fully developed flow. A literature survey of gas turbine blade materials and factors influencing turbine tip blade life was performed. Approximate temperature ranges for the significant blade life reduction mechanisms, hot corrosion, oxidation, and melting were determined. calculations for typical jet engine conditions, In the present a maximum tip temperature of 1488 K was predicted which would lead to high oxidation rates for present day turbine blade alloys.
M.S.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Krolak, Matthew Joseph. « Optimization of a magnetoplasmadynamic arc thruster ». Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-042607-155701/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Weyer, Robert Bernhard. « Investigation of the functioning of a liquefied-gas micro-satellite propulsion system ». Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49765.

Texte intégral
Résumé :
Thesis (MScEng)--University of Stellenbosch, 2003.
ENGLISH ABSTRACT: The focus of this thesis is on the investigation of the functioning of a liquefied-gas thruster. Such a thruster could be used to provide secondary propulsion to a microsatellite in orbit. A general overview of the need for thrusters in micro-satellites is put forward in the introduction. Motivation for deciding to investigate a liquefied-gas system is presented. Recent developments in the field of micro-satellites are discussed as well as their relevance to the project undertaken. Fundamental background theory relevant to the engineering problems associated with the development and analysis of such a system is also presented. Computer programs were written to simulate such a liquefied-gas thruster system. The experimental work carried out to analyse the system from a practical view-point is documented. Attention is also given to the measurement and calibration techniques used to obtain experimental data. One-dimensional fully explicit transient mathematical models of the thruster system were developed to model the system using both compressed air and butane as propellants. These models were incorporated into computer programs used to simulate the transient behaviour of the system. Although it is intended to use butane as the propellant onboard a satellite, the reason for modelling and simulating a system using compressed air is because air is a convenient fluid to work with from both a theoretical and practical point of view. An experimental model of a thruster system was designed, built and tested using air and butane as propellants. Most of the model was built using perspex to allow for the observation of the two-phase behaviour of the propellant inside the system. Locally purchased components were used for the solenoid and fill valves. Readily available butane lighter fluid was used for butane testing. Self-made heating elements were used to provide heat input to the propellant. Testing was done at different back pressures ranging from 100 kPa down to 20 kPa in a vacuum chamber. Good comparison between theoretical and experimental results was obtained for air. Theoretical results for peak thrusts tended to over predict experimental results by approximately 15 % for a system exhausting to a pressure of 100 kPa. Peak thrusts as high as 0.2 N were obtained for vacuum tests conducted at an absolute pressure of 20 kPa. Peak thrusts of approximately 50 mN were achieved for experimental testing III atmospheric conditions using butane with a starting pressure of between 270 and 290 kPa. Typical average thrusts of between 20 mN and 30 mN were noted for butane testing with initial pressure of between 200 to 300 kPa. Peak thrusts of over 0.1 N were observed for vacuum testing at an absolute pressure of 20 kPa. An equation to correlate the experimentally determined average thrust as a function of pulse duration and starting pressure was developed. This correlated most of the experimental data to within ±25 %. Theoretical results for butane testing are able to predict peak thrusts within approximately 20 % for starting pressures in the range of 200 to 300 kPa. Since the project was an exploratory investigation into a liquefied-gas thruster, some additional aspects relating to such systems were also given attention. The effect of liquid propellant motion or sloshing was considered and recommendations regarding the design and placement of the propellant tanks were made. The use of heat pipes as an alternative to electrical heating elements was investigated and some elementary design aspects are presented graphically. The management of the liquid propellant using surface tension devices was examined qualitatively. Recommendations relating to future projects in the field of simple, low-cost propulsion systems for micro-satellites are put forward. More specifically these recommendations are with regard to: thermo-fluid modelling of the propellant, future experimental work to be done, techniques to measure small thrusts and vacuum chamber testing.
AFRIKAANSE OPSOMMING: Die tesis ondersoek die funksionering van 'n vervloeidegas stuwer. So 'n stuwer kan gebruik word om sekondêre aandrywing aan 'n mikro-satelliet in 'n wentelbaan te verskaf. 'n Algemene oorsig oor die behoeftes van stuwers vir mikro-satelliete word voortgesit in die inleiding. Redes vir die gebruik van 'n vervloeidegas stuwer word bespreek. Onlangse ontwikkelinge in die veld van mikro-satelliet aandrywing word bespreek asook die toepaslikheid daarvan. Fundamentele teoretiese agtergrond verbonde aan die ontwikkeling en analise van so 'n stuwer stelsel word ook gegee. Rekenaarprogramme is geskryf om die gedrag van so 'n stuwer stelsel te simuleer. Eksperimentele werk is gedoen om die stelsel vanuit 'n praktiese oogpunt te analiseer. Aandag word ook gegee aan die metings- en kalibrasietegnieke soos toegepas vir die eksperimentele werk. Eendimensionele volle eksplisiete wiskundige modelle is ontwikkelom die oorgangsgedrag van die stuwer-stelsel te simuleer met beide lug en butaan as dryfmiddel. Hierdie modelle is geïnkorporeer in die rekenaar programme om die stuwer stelsel te simuleer. Alhoewel dit beoog word om butaan as die dryfmiddel aan boord die satelliet te gebruik, is lug ook gebruik vir simulasie weens sy gerieflikheid as 'n vloeier uit beide 'n teoretiese en 'n praktiese oogpunt. 'n Eksperimentele model van die stuwer stelsel is ontwerp, gebou en getoets met beide lug en butaan as dryfmiddels. Die model is hoofsaaklik uit perspex gebou sodat die twee-fase gedrag van die butaan uitgebeeld kon word. Vrylik beskikbare butaan aansteker vloeistof IS gebruik VIr butaan toetsing. Selfvervaardigde verhittingselemente is gebruik om hitte aan die dryfmiddel te verskaf. Toetse is gedoen deur verskeie omgewingsdrukke varieërend van 100 kPa af tot 20 kPa in 'n vakuumtenk te gebruik. Goeie ooreenstemming tussen die teoretiese en eksperimentele resultate vir die toetsing van lug is verkry. Die teoretiese resultate neig om die piek stukrag 15 % hoër te voorspel as die eksperimentele resultate vir 'n stelsel wat tot 'n omgewingsdruk van 100 kPa by die uitlaat. Piek stukragte van meer as 0.2 N is gekry vir vakuum toetse wat gedoen is by 'n omgewingsdruk van 20 kPa. Tydens eksperimentele toetsing met butaan teen 'n aanvanklike druk tussen 270 en 290 kPa, in atmosferiese toestande, is piek stukragte van ongeveer 50 mN behaal. Tipiese gemiddelde stukragte van tussen 20 en 30 mN is waargeneem vir butaan toetsing teen 'n aanvanklike druk tussen 200 en 300 kPa. Piek stukragte van meer as 0.1 N is behaal vir vakuum toetse met 'n absolute druk van 20 kPa. 'n Vergelyking om die gemiddelde stukrag, wat eksperimenteel bepaal is, as 'n funksie van puls tydsduur en aanvanklike druk te korreleer, is ontwikkel. Die meeste eksperimentele data se afwyking van die korrelasie-vergelyking was minder as 25 %. Teoretiese resultate vir butaantoetse het piek stukragte binne 20 % van die eksperimenteel metings korrek voorspel vir aanvanklike drukke tussen 200 tot 300 kPa. Weens die feit dat die projek 'n oorhoofse ondersoek in In vervloeidegas stuwer behels, is aandag ook gegee aan addisionele aspekte wat verband hou met sulke stelsels. Die effek van die vloeistof-dryfmiddel se onstabiele beweging in sy tenke is in ag geneem en voorstelle vir die ontwerp en plasing van die dryfmiddel tenke is gemaak. Die gebruik van hitte pype as 'n alternatief vir elektriese verhittingselemente is ondersoek. Verskeie ontwerp aspekte word grafies voorgestel. Die bestuur van die vloeistof-dryfmiddel deur van oppervlak spannings apparaat gebruik te maak, is kwalitatief ondersoek. Voorstelle vir verdere navorsing in die veld van eenvoudige, lae-koste stuwer stelsels vir mikro-satelliete is gemaak. Meer spesifiek is hierdie voorstelle gerig op die termo-vloeidinamiese modellering van die dryfmiddel, verdere eksperimentele navorsing, tegnieke om klein stukragte te meet en vakuumtenk toetse.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jouot, Fabien. « Etude de la détonation dans un jet diphasique cryogénique GH2-LOx : contribution aux études sur les moteurs à onde de détonation ». Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2055/document.

Texte intégral
Résumé :
L’objectif de cette thèse est d’étudier l’initiation directe et la propagation d’une détonation dans un milieu cryogénique diphasique GH2-LOx dans le cadre général des moteurs à onde de détonation pour la propulsion spatiale. Un rappel des bases théoriques sur les processus d’atomisation d’un jet liquide, puis sur la détonation en phase gazeuse, et enfin sur la détonation dans un mélange diphasique, constituent le premier chapitre de la thèse. Le deuxième chapitre présente les dispositifs expérimentaux et les techniques utilisés pour mener à bien les expériences de caractérisation du jet diphasique et d’étude de la détonation. Le troisième chapitre est consacré à l’étude dans un tube en quartz de la granulométrie d’un jet diphasique GHe-LOx non réactif. Une cartographie est ainsi réalisée sur l’ensemble du tube, pour différents débits d’injection. Ces résultats sont corroborés par une étude théorique sur une goutte isolée et par une étude numérique sur le comportement du jet en champ proche de l’injecteur. Le quatrième chapitre présente les résultats de l’étude de la détonation dans un tube en acier d’un mélange réactif GH2-LOx. La détonation est étudiée en fonction de divers paramètres : énergie d’initiation stockée, emplacement du dispositif d’initiation par étincelle, richesse globale du mélange. La célérité et la pression de détonation, ainsi que la structure tridimensionnelle de la détonation, sont les principales informations recueillies pour l’étude du phénomène de détonation en mélange diphasique. Une étude théorique des caractéristiques de la détonation apporte des éclairages supplémentaires sur la détonation à très basse température (100 K)
Within the general framework of detonation engines for space propulsion purpose, this work aims to study direct initiation and propagation of detonation in a cryogenic twophase GH2-LO2 mixture. First chapter is constituted by theoretical basis and state of art on atomization processes in liquid jets, then on gas-phase detonation, and finally on two-phase detonation. Second chapter describes experimental set-up and associate techniques in order to carry out two-phase jet characterization and detonation study. Third chapter is dedicated to the study of droplet size distribution of non reactive two-phase GHe-LO2 jet in a quartz tube. Thus, a droplet size map is constituted through the whole tube, for different helium injection speeds. These results are compared with theoretical study dealing with vaporization and movement of a droplet and with numerical simulations on jet behavior close to the injector. Fourth chapter presents results of a detonation study of a reactive GH2-LO2 two-phase mixture in a semi-open tube. Detonation is studied as a function of following parameters: initiation energy, spark initiation device location along the tube, global equivalence ratio. Velocity, peak pressure and three-dimension structure detonation are the main data collected to study two-phase detonation phenomena. A theoretical study of detonation characteristics brings additional information on detonation at low temperature (100 K)
Styles APA, Harvard, Vancouver, ISO, etc.
8

Becker, William J. « Dynamic surface temperature measurement on the first stage turbine blades in a turbofan jet engine test rig ». Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43743.

Texte intégral
Résumé :
Turbine blade surface temperatures were studied during transient operation in a turbofan engine test rig. A single fiber radiation pyrometer was used to view the suction side of the blades from approximately 60 percent axial chord to the trailing edge at an average radial location of 70 percent blade height. A single ceramic-coated blade produced a once-per-revolution signal that allowed for the tracking of individual blades during the transients. The investigation concentrated on the light-off starting transient and the transients obtained during accelerating and decelerating between power settings. During starting and acceleration transients, the blade surface temperature gradient was observed to reverse. This phenomenon was most apparent during starting when the trailing edge was initially much hotter than the 60 percent chord location, resulting in large temperature gradients. In steady operation the trailing edge temperature was lower than the 60 percent chord location, and the gradients were less severe. During deceleration transients, the trailing edge cooled more rapidly than the 60 percent chord location. This resulted in larger temperature gradients than were seen in steady operation, but no profile inversion was observed. These temperature gradients and profile inversions represent a cycling of thermally-induced stresses which may contribute to low cycle fatigue damage. A simple one-dimensional heat transfer model is presented as a means of explaining the different heating rates observed during the transients.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
9

Benyo, Theresa L. « Analytical and Computational Investigations of a Magnetohydrodynamic (MHD) Energy-Bypass System for Supersonic Turbojet Engines to Enable Hypersonic Flight ». Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1369153719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Khanna, Yash. « Conceptual design and development of thermal management system for hybrid electric aircraft engine. : A study to develop a physical model and investigate the use of Mobil Jet Oil II as coolant for aircraft electrical propulsion under different scenarios and time horizons ». Thesis, Mälardalens högskola, Framtidens energi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-46612.

Texte intégral
Résumé :
The ever-increasing levels of greenhouse gas emissions has led to the scientific community starting to explore the viability of electrical aircraft system, with the most prominent research and product development for hybrid electric system, which forms the transition phase from combustion to fully electric aircrafts. The primary objective of this thesis is to find solutions towards thermal management of the electrical components of a hybrid electric aircraft propulsion system, which generate a significant amount of heat while operating at heavy load conditions required to propel an aircraft. In view of these objectives a micro channel cold plate liquid cooling system, has been dynamically modelled using a combination of lumped parameter and thermal resistance methods of heat transfer analysis. The study investigates the prospects of using Mobil Jet Oil II, typically used as an aircraft lubricant as a coolant for the thermal management system. The primary components of this model are lithium ion battery, DC-AC inverter, permanent magnet motor, cross flow finned micro channel heat exchanger, centrifugal pump and ducts. The electrical components have been dimensioned according to energy storage and load requirements considering their efficiencies and gravimetric power/energy. The system has been simulated and analyzed under different scenarios considering the coolant inlet temperature, air temperature across the heat exchanger and on two-time horizons. Analysis has been done to study the dynamic trends of the component temperature and the coolant at different stages of the system. The scope of the study includes an evaluation of the added weight of the thermal management system under different time horizons and their comparison with results from a reference study. From the simulation results it can be concluded that Mobil Jet Oil II is a promising option as a coolant and therefore its use as a common fluid for gas turbine lubrication and as coolant, will benefit the aircraft as now no extra coolant reservoir is required, allowing reduction in weight carried by the aircraft.
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Livres sur le sujet "Jet engines ; Jet propulsion"

1

Elements of gas turbine propulsion. Reston, Va : American Institute of Aeronautics and Astronautics, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Elements of gas turbine propulsion. New York : McGraw-Hill, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hünecke, Klaus. Jet engines : Fundamentals of theory, design, and operation. Osceola, WI, USA : Motorbooks International, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jet engines : Fundamentals of theory, design, and operation. Shrewsbury, England : Airlife, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Elements of propulsion : Gas turbines and rockets. Reston, Va : American Institute of Aeronautics and Astronautics, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jet propulsion : A simple guide to the aerodynamic and thermodynamic design and performance of jet engines. Cambridge : Cambridge University Press, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Padilla, Carlos E. Optimizing jet transport efficiency : Performance, operations, and economics. New York : McGraw-Hill, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jet propulsion : A simple guide to the aerodynamics [i.e. aerodynamic] and thermodynamic design and performance of jet engines. 2e éd. Cambridge : Cambridge University Press, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roy, Langton, dir. Gas turbine propulsion systems. Chichester, West Sussex : Wiley, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Powell, A. G. Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot. [Washington, DC] : National Aeronautics and Space Administration, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Chapitres de livres sur le sujet "Jet engines ; Jet propulsion"

1

El-Sayed, Ahmed F. « Performance Parameters of Jet Engines ». Dans Fundamentals of Aircraft and Rocket Propulsion, 161–218. London : Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6796-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pirumov, Ul’yan G., et Gennadi S. Roslyakov. « Nozzles of Jet Engines ». Dans Gas Flow in Nozzles, 143–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-86790-3_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

DeSouza, Shaun, et Corin Segal. « Supercritical Coaxial Jet Disintegration ». Dans High-Pressure Flows for Propulsion Applications, 157–81. Reston, VA : American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0157.0182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Benford, Gregory. « Stability of Magnetic Jet Equilibria ». Dans Astrophysical Jets and Their Engines, 205–10. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3927-1_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lieser, J. A., et I. Wallbruch. « CFD Calculation of Isolated Jet Engines with Emphasis on Jet Mixing ». Dans Notes on Numerical Fluid Mechanics (NNFM), 282–90. Wiesbaden : Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-663-10901-3_37.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Drouin, Brian J. « Rotational Spectroscopy at the Jet Propulsion Laboratory ». Dans Remote Sensing of the Atmosphere for Environmental Security, 257–69. Dordrecht : Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5090-9_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kapoor, R. C. « General Relativistic Effects on Collimation of a Jet ». Dans Astrophysical Jets and Their Engines, 245–46. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3927-1_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Guderley, Helga E., et Isabelle Tremblay. « Escape Responses by Jet Propulsion in Scallops 1 ». Dans Physiology of Molluscs, 189–217. New Jersey : Apple Academic Press, Inc., 2016- : Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781315207124-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

De, Ashoke, Gerasimos Sarras et Dirk Roekaerts. « Transported PDF Modeling of Jet-in-Hot-Coflow Flames ». Dans Sustainable Development for Energy, Power, and Propulsion, 439–62. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Matheis, Jan, Hagen Müller, Stefan Hickel et Michael Pfitzner. « Large-Eddy Simulation of Cryogenic Jet Injection at Supercritical Pressures ». Dans High-Pressure Flows for Propulsion Applications, 531–70. Reston, VA : American Institute of Aeronautics and Astronautics, Inc., 2020. http://dx.doi.org/10.2514/5.9781624105814.0531.0570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Jet engines ; Jet propulsion"

1

Mauton, Jose, et Jose Mauton. « Miniature jet engines applied to propulsion education ». Dans 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

CHRYSANTHOU, A., A. JONES et B. PORTER. « Identification of multivariable models of jet engines ». Dans 26th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1874.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Taghavi, Ray, et Saeed Farokhi. « Using Jet Engine Simulator in Propulsion Education ». Dans ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4963.

Texte intégral
Résumé :
Abstract Undergraduate education in jet propulsion can benefit from a modern real-engine simulator. The traditional lecture/laboratory course in propulsion continues to emphasize fundamental aerothermodynamics and often includes a propulsion laboratory that tests small engines (e.g., micro-turbojet engines) mounted on a thrust stand. Modern engine simulators, as virtual test bench, offer new tools and capabilities that help students learn the fundamentals as well as jet engine response to dynamic throttle setting. Geared, high-bypass ratio, two-spool turbofan engines can be simulated in a virtual test bench from takeoff to cruise at different altitudes and Mach numbers. The simulator employs an electric start, a real FADEC (Full Authority Digital Electronic Control) system and system communication that is coupled to a real power lever. The tools that are embedded in the virtual test bench allows for various studies, including control systems, comparing open-loop and closed-loop control. The integration of a state-of-the-art engine simulator in the jet propulsion course at the University of Kansas, Aerospace Engineering shows enhanced student engagement and learning.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kim, Chun, Minsoo Yoon, Soo Yang et Dae Lee. « An altitude test facility for small jet engines ». Dans 37th Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

ALCOCK, JOSEPH, et STEVEN HAGAR. « Transferring jet engine diagnostic and control technology to liquid propellant rocket engines ». Dans 25th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gastineau, Zane, et Gemunu Happawana. « Robust model-based control for jet engines ». Dans 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

JONES, A., B. PORTER et A. CHRYSANTHOU. « Design of digital self-selecting multivariable controllers for jet engines ». Dans 26th Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sielemann, Michael, Anand Pitchaikani, Nithish Selvan et Majed Sammak. « The Jet Propulsion Library : Modeling and simulation of aircraft engines ». Dans The 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017. Linköping University Electronic Press, 2017. http://dx.doi.org/10.3384/ecp17132909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wickman, John. « In-situ Mars rocket and jet engines burning carbon dioxide ». Dans 35th Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mahler, Frederic, et Esther Boyes. « The application of brush seals in large commercial jet engines ». Dans 31st Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Jet engines ; Jet propulsion"

1

Yost, Douglas M., et Adam C. Brandt. Propulsion and Power Rapid Response Research and Development (R&D) Support. Delivery Order 0011 : Advanced Propulsion Fuels R&D, Subtask : Evaluation of 50/50 Hydroprocessed Renewable Jet Fuel and JP8 in the Ford 6.7L High-Pressure Common Rail Design Engine. Fort Belvoir, VA : Defense Technical Information Center, décembre 2012. http://dx.doi.org/10.21236/ada583392.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ferguson, Frederick, Mark Schulz et Mannur Sundaresan. North Carolina Agricultural and Technical State University Jet Propulsion Laboratory. Fort Belvoir, VA : Defense Technical Information Center, février 2003. http://dx.doi.org/10.21236/ada411508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hepner, David J., Michael J. Hollis et Charles E. Mitchell. Yawsonde Technology for the Jet Propulsion Laboratory (JPL) Free Flying Magnetometer (FFM) Program. Fort Belvoir, VA : Defense Technical Information Center, juillet 1998. http://dx.doi.org/10.21236/ada352980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mandeles, Mark D. The Development of the B-52 and Jet Propulsion : A Case Study in Organizational Innovation. Fort Belvoir, VA : Defense Technical Information Center, mars 1998. http://dx.doi.org/10.21236/ada341727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shumway, L. A. Characterization of Jet Engine Exhaust Particulates for the F404, F118, T64, and T58 Aircraft Engines. Fort Belvoir, VA : Defense Technical Information Center, mars 2002. http://dx.doi.org/10.21236/ada405470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mezic, Igor. Dynamics and Control of Instabilities and Mixing in Complex Fluid Flows ; Applications to Jet Engines. Fort Belvoir, VA : Defense Technical Information Center, janvier 2001. http://dx.doi.org/10.21236/ada389184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Skone, Timothy J., David T. Allen, Charles Allport, Kristopher Atkins, Daniel Baniszewski, Dong Gu Choi, Joyce S. Cooper et al. Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels : F-T Based SPK-1 Case Study (Report). Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1504467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Skone, Timothy J., et William E. Harrison, III. Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels : Fischer Tropsch Based SPK-1 Case Study (Model). Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1504468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chehroudi, B., D. Talley et E. Coy. Initial Growth Rate and Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas Turbine, and Diesel Engines. Fort Belvoir, VA : Defense Technical Information Center, novembre 1998. http://dx.doi.org/10.21236/ada409800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Klein, James K. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Delivery Order 0011 : Production Demonstration and Laboratory Evaluation of R-8 and R-8X Hydroprocessed Renewable Jet (HRJ) Fuel for the DoD Alternative Fuels Program. Fort Belvoir, VA : Defense Technical Information Center, mai 2010. http://dx.doi.org/10.21236/ada536935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie