Littérature scientifique sur le sujet « Kinetic of combustion »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Kinetic of combustion ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Kinetic of combustion"
Qin, Yuelin, Qingfeng Ling, Wenchao He, Jinglan Hu et Xin Li. « Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions : A Kinetic Study ». Materials 15, no 3 (27 janvier 2022) : 987. http://dx.doi.org/10.3390/ma15030987.
Texte intégralZhang, Yong Feng, Xiang Yun Chen, Quan Zhou, Qian Cheng Zhang et Chun Ping Li. « Combustion Kinetic Analysis of Lignite in Different Oxygen Concentration ». Advanced Materials Research 884-885 (janvier 2014) : 37–40. http://dx.doi.org/10.4028/www.scientific.net/amr.884-885.37.
Texte intégralOo, Chit Wityi, Masahiro Shioji, Hiroshi Kawanabe, Susan A. Roces et Nathaniel P. Dugos. « A Skeletal Kinetic Model For Biodiesel Fuels Surrogate Blend Under Diesel-Engine Conditions ». ASEAN Journal of Chemical Engineering 15, no 1 (1 octobre 2015) : 52. http://dx.doi.org/10.22146/ajche.49693.
Texte intégralZhu, Zhouyuan, Canhua Liu, Yajing Chen, Yuning Gong, Yang Song et Junshi Tang. « In-situ Combustion Simulation from Laboratory to Field Scale ». Geofluids 2021 (14 décembre 2021) : 1–12. http://dx.doi.org/10.1155/2021/8153583.
Texte intégralSun, Minmin, Jianliang Zhang, Kejiang Li, Guangwei Wang, Haiyang Wang et Qi Wang. « Thermal and kinetic analysis on the co-combustion behaviors of anthracite and PVC ». Metallurgical Research & ; Technology 115, no 4 (2018) : 411. http://dx.doi.org/10.1051/metal/2018064.
Texte intégralDinde, Prashant, A. Rajasekaran et V. Babu. « 3D numerical simulation of the supersonic combustion of H2 ». Aeronautical Journal 110, no 1114 (décembre 2006) : 773–82. http://dx.doi.org/10.1017/s0001924000001640.
Texte intégralGutierrez, Albio D., et Luis F. Alvarez. « Simulation of Plasma Assisted Supersonic Combustion over a Flat Wall ». Mathematical Modelling of Engineering Problems 9, no 4 (31 août 2022) : 862–72. http://dx.doi.org/10.18280/mmep.090402.
Texte intégralKomarov, Ivan, Daria Kharlamova, Bulat Makhmutov, Sofia Shabalova et Ilya Kaplanovich. « Natural Gas-Oxygen Combustion in a Super-Critical Carbon Dioxide Gas Turbine Combustor ». E3S Web of Conferences 178 (2020) : 01027. http://dx.doi.org/10.1051/e3sconf/202017801027.
Texte intégralZhang, Yong-Feng, Xiang-Yun Chen, Qian-Cheng Zhang, Chun-Ping Li et Quan Zhou. « Oxygen-enriched combustion of lignite ». Thermal Science 19, no 4 (2015) : 1389–92. http://dx.doi.org/10.2298/tsci1504389z.
Texte intégralVárhegyi, Gábor, Zoltán Sebestyén, Zsuzsanna Czégény, Ferenc Lezsovits et Sándor Könczöl. « Combustion Kinetics of Biomass Materials in the Kinetic Regime ». Energy & ; Fuels 26, no 2 (23 décembre 2011) : 1323–35. http://dx.doi.org/10.1021/ef201497k.
Texte intégralThèses sur le sujet "Kinetic of combustion"
Marsano, Flavio. « Chemical kinetic modelling of hydrocarbon combustion ». Thesis, Cardiff University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402067.
Texte intégralMartins, Ivana. « Redução sistemática de mecanismos cinéticos de combustão ». reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/35625.
Texte intégralDetailed chemical kinetic mechanisms are routinely used to describe, at the molecular level, the transformation of reactants to products of combustion, which occurs via many elementary steps. Its use in computer models to simulate combustion processes can generate information to improve the fuel quality and performance of the combustion process, and to quantify the emissions from this process. Thus, to describe a process of oxidation, the computational effort becomes very large, requiring simplifications of the reaction mechanism. The development of reduced kinetic mechanisms for combustion processes aims to reduce the computational effort necessary for the numerical analysis. The reduced models can replace the differential equations of the intermediate species, which are considered to be in steady state, through algebraic relationships. In this way, this work develops a method for reducing the kinetics of combustion for hydrogen, carbon monoxide and hydrocarbons C1-C7, using assumptions of steady-state. A detailed kinetic mechanism containing 439 elementary reactions was analysed and reduced mechanisms with up to 10 steps were developed. Comparisons between experiment and simulations for the reduced kinetic mechanism of methane and propane, show good agreement, validating these mechanisms, and consequently, increasing the reliability of the others mechanisms studied.
Honnet, Sylvie. « Detailed and reduced kinetic mechanisms in low-emission combustion processes / ». Göttingen : Cuvillier, 2007. http://d-nb.info/98605528X/04.
Texte intégralZANONI, M. A. B. « Smoldering Combustion In Porous Media Kinetic Models For Numerical Simulations ». Universidade Federal do Espírito Santo, 2012. http://repositorio.ufes.br/handle/10/4161.
Texte intégralTecnologias avançadas para a geração de energia usando combustíveis não convencionais xisto betuminoso e seu semi-coque, areias betuminosas, petróleo extra-pesado e biomassa proveniente de resíduos sólidos urbanos e de lodo de esgoto - têm em comum processos termoquímicos compostos de complexas reações químicas. Este trabalho trata da formulação e otimização de mecanismos químicos normalmente envolvidos na pirólise do xisto betuminoso e na combustão do xisto betuminoso e seu semi-coque. Problemas inversos (usando o algoritmo de Levenberg-Marquardt) foram empregados para minimizar o erro entre os valores estimados e os dados de termogravimétria para os mecanismos de reação de 3 passos para a pirólise do xisto betuminos, e mecanismos de 4 e 3 passos para o xisto betuminoso e seu semi-coque, respectivamente. Os parâmetros cinéticos, tais como ordem de reação, fator pré-exponencial, energia de ativação e os coeficientes estequiométricos que afetam a secagem, as reações de oxidação, pirólise e descarbonatação foram estimadas com sucesso. Além disso, os erros estatísticos e residuais foram avaliados, resultando em um valor razoável para todas as estimativas e o mecanismo cinético proposto e estimado para a combustão do semi-coque foi aplicado em um código em meios porosos. Um estudo paramétrico entre o perfil de temperatura e a velocidade do ar, e o perfil de temperatura e a concentração de carbono fixo foi desenvolvido. Este estudo mostra que o perfil de temperatura é extremamente influenciado por estes parâmetros, confirmando que a propagação da frente é controlada pela injeção de O2. Palavras-chave: Xisto Betuminoso, Semi-Coque, Pirólise, Combustão, Estimação de Parâmetros, Problemas Inversos, Levenberg-Marquardt, Meios Porosos.
Leung, Kai Ming. « Kinetic modelling of hydrocarbon flames using detailed and systematically reduced chemistry ». Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/7760.
Texte intégralFürst, Magnus. « Uncertainty Quantification and Optimization of kinetic mechanisms for non-conventional combustion regimes : Turning uncertainties into possibilities ». Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/307514/5/contratMF.pdf.
Texte intégralDoctorat en Sciences de l'ingénieur et technologie
This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 643134, and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 714605.
info:eu-repo/semantics/nonPublished
Qureshi, Nafisa. « A kinetic study of Maya crude oil for in-situ combustion ». Thesis, University of Salford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484213.
Texte intégralSOUZA, OBERDAN MIGUEL RODRIGUES DE. « PRESUMED PDF MODEL WITH TABULATED CHEMICAL KINETIC APPLIED FOR SPRAY COMBUSTION ». PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30283@1.
Texte intégralCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Neste trabalho, foi desenvolvida uma modificação do modelo para simulação de sprays Diesel com o método de PDF presumida e cinética química tabulada. Através do acoplamento entre a parte química e a parte turbulenta, avaliou-se os efeitos do spray com a metodologia flamelet. Onde o conceito flamelet trata a chama difusiva e transiente como um conjunto de chamas unidimensionais, utilizando o modelo de PDF presumida para a avaliação dos valores turbulentos. A validação do modelo foi realizada com dados experimentais do laboratório Sandia, em uma câmara a volume constante. A validação e a aplicação do modelo foram conduzidas em diferentes tipos de ensaios experimentais: avaliação e comparação para diferentes modelos de cinética química do n-heptano, validação do método para o modelo de turbulência K-epsilon na câmara de volume constante do Sandia para o n-heptano não reativo, validação e comparação do modelo para o spray reativo e aplicação de modelo para o estudo comprimento do ancoramento de chama e para o tempo de atraso de ignição do n-heptano para diferentes temperaturas ambientes. Em geral, a modelagem proposta tem demonstrado excelente capacidade de previsão para a combustão com spray Diesel numa vasta gama de aplicações e é um candidato altamente promissor para outras aplicações em motores Diesel.
In this work, a modification of the model for the simulation of diesel sprays with the presumed PDF method and tabulated chemical kinetics was developed. Through the coupling between the chemical part and the turbulent part, the effects of the spray were evaluated for the flamelet methodology. Where the textit flamelet concept treats the diffusive and transient flame as a set of one-dimensional flames, using the presumed PDF model for the evaluation of turbulent values. The validation of the model was performed with experimental data from the Sandia laboratory, in a chamber at constant volume. The validation and application of the model were conducted in different types of experimental trials: evaluation and comparison for different chemical kinetics models of n-heptane, validation of the method for the turbulence model K-epsilon in the constant volume chamber of the Sandia for non-reactive n-heptane, validation and comparison of the model for the reactive spray and model application for the study of the flame anchoring length and for the ignition delay time of n-heptane at different ambient temperatures. In general, the proposed modeling has demonstrated excellent predictive capacity for diesel spray combustion in a wide range of applications and is a highly promising candidate for other applications in diesel engines.
Khan, Mohammad A. « Thermochemical kinetic studies of organic peroxides relevant to the combustion of hydrocarbons ». Thesis, University of Aberdeen, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290241.
Texte intégralPhadungsukanan, Weerapong. « Building a computational chemistry database system for the kinetic studies in combustion ». Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648233.
Texte intégralLivres sur le sujet "Kinetic of combustion"
Norbert, Peters, et Rogg Bernd 1951-, dir. Reduced kinetic mechanisms for applications in combustion systems. Berlin : Springer-Verlag, 1993.
Trouver le texte intégralWestley, Francis. Compilation of chemical Kinetic data for combustion chemistry. Washington : National Bureau of Standards, 1987.
Trouver le texte intégralWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Gaithersburg, MD : U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Trouver le texte intégralPeters, Norbert, et Bernd Rogg, dir. Reduced Kinetic Mechanisms for Applications in Combustion Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-540-47543-9.
Texte intégralWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Washington : U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Trouver le texte intégralWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Gaithersburg, MD : U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Trouver le texte intégralKamath, Vimod Mangalore. A kinetic study of in-situ combustion for oil recovery. Salford : University of Salford, 1986.
Trouver le texte intégralKrishna, Kundu, Ghorashi Bahman et United States. National Aeronautics and Space Administration., dir. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC : National Aeronautics and Space Administration, 1993.
Trouver le texte intégralP, Kundu Krishna, Ghorashi Bahman et United States. National Aeronautics and Space Administration., dir. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC : National Aeronautics and Space Administration, 1993.
Trouver le texte intégralP, Kundu Krishna, Ghorashi Bahman et United States. National Aeronautics and Space Administration., dir. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC : National Aeronautics and Space Administration, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Kinetic of combustion"
Turányi, Tamás, et Alison S. Tomlin. « Storage of Chemical Kinetic Information ». Dans Cleaner Combustion, 485–512. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_19.
Texte intégralBlurock, Edward, et Frédérique Battin-Leclerc. « Modeling Combustion with Detailed Kinetic Mechanisms ». Dans Cleaner Combustion, 17–57. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_2.
Texte intégralFaravelli, Tiziano, Alessio Frassoldati, Emma Barker Hemings et Eliseo Ranzi. « Multistep Kinetic Model of Biomass Pyrolysis ». Dans Cleaner Combustion, 111–39. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_5.
Texte intégralFittschen, Christa. « Kinetic Studies of Elementary Chemical Steps with Relevance in Combustion and Environmental Chemistry ». Dans Cleaner Combustion, 607–28. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_23.
Texte intégralBattin-Leclerc, Frédérique, Henry Curran, Tiziano Faravelli et Pierre A. Glaude. « Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components ». Dans Cleaner Combustion, 93–109. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_4.
Texte intégralBoettner, J. C., M. Cathonnet, P. Dagaut et F. Gaillard. « Kinetic Modelling of Light Hydrocarbons Combustion ». Dans Mathematical Modeling in Combustion and Related Topics, 421–29. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2770-4_27.
Texte intégralRubtsov, Nickolai M. « Some Features of Kinetic Mechanisms of Gaseous Combustion ». Dans The Modes of Gaseous Combustion, 83–109. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25933-8_4.
Texte intégralZhang, Jing, et Ping Lu. « Study on Kinetic Parameters and Reductive Decomposition Characteristics of FGD Gypsum ». Dans Cleaner Combustion and Sustainable World, 411–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_58.
Texte intégralKlimontovich, Yu I. « Kinetic Description of Autowave Processes and Hydrodynamic Motion ». Dans Dissipative Structures in Transport Processes and Combustion, 144–54. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84230-6_11.
Texte intégralWang, Zhandong. « Experimental Method and Kinetic Modeling ». Dans Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion, 23–37. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5693-2_2.
Texte intégralActes de conférences sur le sujet "Kinetic of combustion"
Ju, Yiguang, Joseph K. Lefkowitz, Tomoya Wada, Xueliang Yang, Sang Hee Won et Wenting Sun. « Plasma assisted combustion : kinetic studies and new combustion technology ». Dans 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0156.
Texte intégralCavanzo, E. A., S. F. Muñoz, A. Ordoñez et H. Bottia. « Kinetics of Wet In-Situ Combustion : A Review of Kinetic Models ». Dans SPE Heavy and Extra Heavy Oil Conference : Latin America. SPE, 2014. http://dx.doi.org/10.2118/171134-ms.
Texte intégralJoklik, Richard G., Ponnuthurai Gokulakrishnan et Michael S. Klassen. « Kinetic Modeling of Plasma-Enhanced Vitiated Combustion ». Dans ASME Turbo Expo 2015 : Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43772.
Texte intégralSuttle, Aaron E., Brian T. Fisher, Dennis R. Parnell et Joshua A. Bittle. « Demonstrating a Direct-Injection Constant-Volume Combustion Chamber As a Validation Tool for Chemical Kinetic Modeling of Liquid Fuels ». Dans ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9729.
Texte intégralDagaut, P., A. Mze´-Ahmed, K. Hadj-Ali et P. Die´vart. « Synthetic Jet Fuel Combustion : Experimental and Kinetic Modeling Study ». Dans ASME 2011 Turbo Expo : Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45234.
Texte intégralRao, G. Arvind, Yeshayahou Levy et Ephraim J. Gutmark. « Chemical Kinetic Analysis of a Flameless Gas Turbine Combustor ». Dans ASME Turbo Expo 2008 : Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50619.
Texte intégralGalie, Peter, Bo Xu et Yiguang Ju. « Kinetic Enhancement of Mesoscale Combustion by Using a Novel Nested Doll Combustor ». Dans 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-576.
Texte intégralWang, Huiru, et Jie Jin. « Reduced Chemical Kinetic Mechanism for Jet Fuel Combustion ». Dans 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6709.
Texte intégralMiyoshi, Akira. « SI Combustion Characteristics of Cyclopentane - Detailed Kinetic Mechanism ». Dans 2019 JSAE/SAE Powertrains, Fuels and Lubricants. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2019. http://dx.doi.org/10.4271/2019-01-2305.
Texte intégralMontgomery, C., S. Cannon, M. Mawid et B. Sekar. « Reduced chemical kinetic mechanisms for JP-8 combustion ». Dans 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-336.
Texte intégralRapports d'organisations sur le sujet "Kinetic of combustion"
Pitz, William J., Marco Mehl et Charles K. Westbrook. Chemical Kinetic Models for Advanced Engine Combustion. Office of Scientific and Technical Information (OSTI), octobre 2014. http://dx.doi.org/10.2172/1174293.
Texte intégralLempert, Walter R., et Igor V. Adamovich. Kinetic Studies of Nonequilibrium Plasma-Assisted Combustion. Fort Belvoir, VA : Defense Technical Information Center, février 2010. http://dx.doi.org/10.21236/ada524301.
Texte intégralPitz, W., et C. Westbrook. Chemical Kinetic Modeling of Hydrogen Combustion Limits. Office of Scientific and Technical Information (OSTI), avril 2008. http://dx.doi.org/10.2172/928549.
Texte intégralPitz, W., C. Westbrook et E. Silke. Chemical Kinetic Modeling of Combustion of Automotive Fuels. Office of Scientific and Technical Information (OSTI), novembre 2006. http://dx.doi.org/10.2172/897957.
Texte intégralWestley, Francis, John T. Herron et R. J. Cvetanovic. Compilation of chemical kinetic data for combustion chemistry :. Gaithersburg, MD : National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.nsrds.73p1.
Texte intégralWestley, Francis, John T. Herron et R. J. Cvetanovic. Compilation of chemical kinetic data for combustion chemistry :. Gaithersburg, MD : National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.nsrds.73p2.
Texte intégralPitz, W., C. Westbook et M. Mehl. Chemical Kinetic Models for HCCI and Diesel Combustion. Office of Scientific and Technical Information (OSTI), octobre 2008. http://dx.doi.org/10.2172/945558.
Texte intégralPitz, W., C. Westbrook, M. Mehl et S. Sarathy. Chemical Kinetic Models for HCCI and Diesel Combustion. Office of Scientific and Technical Information (OSTI), novembre 2010. http://dx.doi.org/10.2172/1016930.
Texte intégralSeshadri, K. Chemical-Kinetic Characterization of Autoignition and Combustion of Surrogate Diesel. Office of Scientific and Technical Information (OSTI), mars 2003. http://dx.doi.org/10.2172/15007311.
Texte intégralMitchell, R., R. Hurt, L. Baxter et D. Hardesty. Compilation of Sandia coal char combustion data and kinetic analyses. Office of Scientific and Technical Information (OSTI), juin 1992. http://dx.doi.org/10.2172/7045508.
Texte intégral