Littérature scientifique sur le sujet « Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Tian, Shiyu, Shuyue Xing, Xingrui Li, Yangyang Luo, Caixia Yuan, Wei Chen, Huixing Jiang et Xiaojie Wang. « A Systematic Exploration of Knowledge Graph Alignment with Large Language Models in Retrieval Augmented Generation ». Proceedings of the AAAI Conference on Artificial Intelligence 39, no 24 (11 avril 2025) : 25291–99. https://doi.org/10.1609/aaai.v39i24.34716.
Texte intégralHamza, Ameer, Abdullah, Yong Hyun Ahn, Sungyoung Lee et Seong Tae Kim. « LLaVA Needs More Knowledge : Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies ». Proceedings of the AAAI Conference on Artificial Intelligence 39, no 3 (11 avril 2025) : 3311–19. https://doi.org/10.1609/aaai.v39i3.32342.
Texte intégralSong, Sihan, Chuncheng Yang, Li Xu, Haibin Shang, Zhuo Li et Yinghui Chang. « TravelRAG : A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph ». ISPRS International Journal of Geo-Information 13, no 11 (16 novembre 2024) : 414. http://dx.doi.org/10.3390/ijgi13110414.
Texte intégralSaran Raj. S et Dr. C. Meenakshi. « A Smart Legal Assistant for Indian Laws ». International Journal of Latest Technology in Engineering Management & ; Applied Science 14, no 4 (15 mai 2025) : 588–92. https://doi.org/10.51583/ijltemas.2025.140400064.
Texte intégralZhang, Haiyu, Yinghui Zhao, Boyu Sun, Yaqi Wu, Zetian Fu et Xinqing Xiao. « Large Language Model Based Intelligent Fault Information Retrieval System for New Energy Vehicles ». Applied Sciences 15, no 7 (6 avril 2025) : 4034. https://doi.org/10.3390/app15074034.
Texte intégralMartin, Andreas, Hans Friedrich Witschel, Maximilian Mandl et Mona Stockhecke. « Semantic Verification in Large Language Model-based Retrieval Augmented Generation ». Proceedings of the AAAI Symposium Series 3, no 1 (20 mai 2024) : 188–92. http://dx.doi.org/10.1609/aaaiss.v3i1.31199.
Texte intégralYao, Yao, et Horacio González–Vélez. « AI-Powered System to Facilitate Personalized Adaptive Learning in Digital Transformation ». Applied Sciences 15, no 9 (30 avril 2025) : 4989. https://doi.org/10.3390/app15094989.
Texte intégralBalasubramanian, Abhinav. « Accelerating Research with Automated Literature Reviews : A Rag-Based Framework ». International Journal of Multidisciplinary Research and Growth Evaluation. 6, no 2 (2025) : 337–42. https://doi.org/10.54660/.ijmrge.2025.6.2.337-342.
Texte intégralYang, Jiawei, Chuanyao Sun, Junwu Zhou, Qingkai Wang, Kanghui Zhang et Tao Song. « Knowledge-Inference-Based Intelligent Decision Making for Nonferrous Metal Mineral-Processing Flowsheet Design ». Minerals 15, no 4 (3 avril 2025) : 374. https://doi.org/10.3390/min15040374.
Texte intégralVanGundy, Braxton, Nipa Phojanamongkolkij, Barclay Brown, Ramana Polavarapu et Joshua Bonner. « Requirement Discovery Using Embedded Knowledge Graph with ChatGPT ». INCOSE International Symposium 34, no 1 (juillet 2024) : 2011–27. http://dx.doi.org/10.1002/iis2.13253.
Texte intégralThèses sur le sujet "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Schaeffer, Marion. « Towards efficient Knowledge Graph-based Retrieval Augmented Generation for conversational agents ». Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMIR06.
Texte intégralConversational agents have become widespread in recent years. Today, they have transcended their initial purpose of simulating a conversation with a computer program and are now valuable tools for accessing information and carrying out various tasks, from customer service to personal assistance. With the rise of text-generative models and Large Language Models (LLMs), the capabilities of conversational agents have increased tenfold. However, they are now subject to hallucinations, producing false information. A popular technique to limit the risk of hallucinations is Retrieval Augmented Generation (RAG), which injects knowledge into a text generation process. Such injected knowledge can be drawn from Knowledge Graphs (KGs), which are structured machine-readable knowledge representations. Therefore, we explore Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) to build trusted conversational agents. We demonstrate our approach on a real-world use case for citizen support by building conversational agents for disability management in cities. We first present a history of conversational agents, introducing the approaches implemented over the years and the evaluation techniques. We then define KGs and ontologies, and explore construction and evaluation techniques. As we could not find a directly exploitable KG, our first contribution introduces the Ontology Learning Applied Framework (OLAF). This modular system is built for automated and repeatable KG construction from unstructured text. OLAF integrates linguistic, statistical, and LLM-based techniques to generate Minimum Viable Ontologies for specific domains. Applied to real-world datasets, OLAF demonstrates robust performance through gold-standard evaluations and task-specific Competency Questions. We detail the construction process for a KG about disability management in a French city. We then propose an architecture for KG-RAG systems to enhance information retrieval by aligning user queries with KG structures through entity linking, graph queries, and LLM-based retrieval approaches. We demonstrate our architecture on different use cases, which we evaluate using criteria such as performance, human preference, and environmental impact. While user preferences advantage Text-RAG, KG-RAG's reduced computational footprint underscores its potential for sustainable AI practices. Finally, we identify the critical part of the architecture as the retriever. Therefore, we tackle the retrieval task in our architecture by exploring embeddings in various contexts, i.e. improving EL, retrieval, and providing a caching system. We also propose mechanisms for handling multi-turn conversations. This work establishes a comprehensive framework for KG-RAG systems, combining the semantic depth of KGs with the generative capabilities of LLMs to deliver accurate, contextual, and sustainable conversational agents. Contributions include OLAF for scalable KG construction, a robust KG-RAG pipeline, and embedding-based enhancements for retrieval and interaction quality. By addressing conversational agents' industrial challenges, such as scalability, retrieval precision, and conversational coherence, this research lays the foundation for deploying KG-RAG systems in diverse and specialised domains
Chapitres de livres sur le sujet "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Malakhov, Kyrylo. « From Archimate to Computer Ontologies : Advancing Semantic Enterprise Architecture With RAG/RIG AI Services in RDF/OWL ». Dans Digital Transformation and Intelligent Systems : Theory, Models, Practice, 57–111. Iowa State University Digital Press, 2025. https://doi.org/10.31274/isudp.2025.197.02.
Texte intégralIlyas, Qazi Mudassar, et Sadia Aziz. « Enhancing the RAG Pipeline Through Advanced Optimization Techniques ». Dans Advances in Computational Intelligence and Robotics, 59–80. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-6255-6.ch003.
Texte intégralShi, Yunxiao, Xing Zi, Zijing Shi, Haimin Zhang, Qiang Wu et Min Xu. « Enhancing Retrieval and Managing Retrieval : A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240748.
Texte intégralGustafson, Jerry Ryan David, Gaganpreet Jhajj, Xiaokun Zhang et Fuhua Oscar Lin. « Enhancing Project-Based Learning With a GenAI Tool Based on Retrieval ». Dans Advances in Educational Marketing, Administration, and Leadership, 161–94. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-5443-8.ch006.
Texte intégralLe, Nguyen-Khang, Dieu-Hien Nguyen et Le Minh Nguyen. « ANSPRE : Improving Question-Answering in Large Language Models with Answer-Prefix Generation ». Dans Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240778.
Texte intégralDarwish, Dina. « Integration of LLMs in Smart Cities for Sustainable Energy Solutions ». Dans Revolutionizing Urban Development and Governance With Emerging Technologies, 405–30. IGI Global, 2025. https://doi.org/10.4018/979-8-3373-1375-7.ch014.
Texte intégralActes de conférences sur le sujet "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Dong, Chenxi, Yimin Yuan, Kan Chen, Shupei Cheng et Chujie Wen. « How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG) ». Dans 2025 14th International Conference on Educational and Information Technology (ICEIT), 152–57. IEEE, 2025. https://doi.org/10.1109/iceit64364.2025.10975937.
Texte intégralChen, Qi, et Lin Ni. « TCM MLKG-RAG : Traditional Chinese Medicine Intelligent Diagnosis Based on Multi-Layer Knowledge Graph Retrieval-Augmented Generation ». Dans 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC), 958–62. IEEE, 2024. https://doi.org/10.1109/eiecc64539.2024.10929529.
Texte intégralXiao, Wei, Yu Liu, XiangLong Li, Feng Gao et JinGuang Gu. « TKG-RAG : A Retrieval-Augmented Generation Framework with Text-chunk Knowledge Graph ». Dans 2024 25th International Arab Conference on Information Technology (ACIT), 1–9. IEEE, 2024. https://doi.org/10.1109/acit62805.2024.10877117.
Texte intégralHou, Yingqi, Yichang Shao, Zhongyi Han et Zhirui Ye. « Construction and Application of Traffic Accident Knowledge Graph Based on LLM ». Dans 2024 International Conference on Smart Transportation Interdisciplinary Studies. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2025. https://doi.org/10.4271/2025-01-7139.
Texte intégralZhao, Ruilin, Feng Zhao, Long Wang, Xianzhi Wang et Guandong Xu. « KG-CoT : Chain-of-Thought Prompting of Large Language Models over Knowledge Graphs for Knowledge-Aware Question Answering ». Dans Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/734.
Texte intégralKuratomi, Gustavo, Paulo Pirozelli, Fabio G. Cozman et Sarajane M. Peres. « A RAG-Based Institutional Assistant ». Dans Encontro Nacional de Inteligência Artificial e Computacional, 755–66. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/eniac.2024.245243.
Texte intégralRai, P., A. Jain et A. Anand. « Generative AI and Large Language Model Assisted Causal Discovery and Inference for Driving Process Improvements ». Dans ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/221872-ms.
Texte intégralSchönwälder, Erik, Martin Hahmann et Gritt Ott. « Using compact Retrieval-Augmented Generation for knowledge preservation in SMBs ». Dans 13th International Conference on Human Interaction & Emerging Technologies : Artificial Intelligence & Future Applications. AHFE International, 2025. https://doi.org/10.54941/ahfe1005891.
Texte intégralDanter, Daniel, Heidrun Mühle et Andreas Stöckl. « Advanced Chunking and Search Methods for Improved Retrieval-Augmented Generation (RAG) System Performance in E-Learning ». Dans 2024 AHFE International Conference on Human Factors in Design, Engineering, and Computing (AHFE 2024 Hawaii Edition). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005756.
Texte intégralZhang, Leo, et Carlos Gonzalez. « An AI-Driven Debate Judging System using Emotional and Content Analysisbased on Artificial Intelligence and Machine Learning ». Dans 9th International Conference on Artificial Intelligence, Soft Computing And Applications, 217–30. Academy & Industry Research Collaboration, 2025. https://doi.org/10.5121/csit.2025.150419.
Texte intégral