Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Laser-Induced shock waves.

Articles de revues sur le sujet « Laser-Induced shock waves »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Laser-Induced shock waves ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Campanella, Beatrice, Stefano Legnaioli, Stefano Pagnotta, Francesco Poggialini, and Vincenzo Palleschi. "Shock Waves in Laser-Induced Plasmas." Atoms 7, no. 2 (2019): 57. http://dx.doi.org/10.3390/atoms7020057.

Texte intégral
Résumé :
The production of a plasma by a pulsed laser beam in solids, liquids or gas is often associated with the generation of a strong shock wave, which can be studied and interpreted in the framework of the theory of strong explosion. In this review, we will briefly present a theoretical interpretation of the physical mechanisms of laser-generated shock waves. After that, we will discuss how the study of the dynamics of the laser-induced shock wave can be used for obtaining useful information about the laser–target interaction (for example, the energy delivered by the laser on the target material) o
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Zhihua, Duanming Zhang, Boming Yu, and Li Guan. "Global-Space Propagating Characteristics of Pulsed-Laser-Induced Shock Waves." Modern Physics Letters B 17, no. 19 (2003): 1057–66. http://dx.doi.org/10.1142/s0217984903006086.

Texte intégral
Résumé :
Under the propagating limitation-conditions and based on the pulsed-laser-induced plasma shock wave theory,1 the propagating rules in the global free space (including close areas and mid-far areas) of pulsed-laser-induced shock waves are established for the first time. Compared with the previous work by Bian et al.,2 our theoretical model can directly lead to the relationship of the initial Mach number M0 of plasma shock waves and the whole energy E released into plasma shock waves from a pulsed laser without any approximations or any unnecessary experimental parameters. Here, M0 is also relat
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kang, Qiao, Dongyi Shen, Jie Sun, et al. "Optical brake induced by laser shock waves." Journal of Nonlinear Optical Physics & Materials 29, no. 03n04 (2020): 2050010. http://dx.doi.org/10.1142/s0218863520500101.

Texte intégral
Résumé :
We demonstrate an optical method to modify friction forces between two close-contact surfaces through laser-induced shock waves, which can strongly enhance surface friction forces in a sandwiched confinement with/without lubricant, due to the increase of pressure arising from excited shock waves. Such enhanced friction can even lead to a rotating rotor’s braking effect. Meanwhile, this shock wave-modified friction force is found to decrease under a free-standing configuration. This technique of optically controllable friction may pave the way for applications in optical levitation, transportat
Styles APA, Harvard, Vancouver, ISO, etc.
4

Teubner, Ulrich, Yun Kai, Theodor Schlegel, David E. Zeitoun, and Walter Garen. "Laser-plasma induced shock waves in micro shock tubes." New Journal of Physics 19, no. 10 (2017): 103016. http://dx.doi.org/10.1088/1367-2630/aa83d8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Eliezer, Shalom, Shirly Vinikman Pinhasi, José Maria Martinez Val, Erez Raicher, and Zohar Henis. "Heating in ultraintense laser-induced shock waves." Laser and Particle Beams 35, no. 2 (2017): 304–12. http://dx.doi.org/10.1017/s0263034617000192.

Texte intégral
Résumé :
AbstractThis paper considers the heating of a target in a shock wave created in a planar geometry by the ponderomotive force induced by a short laser pulse with intensity higher than 1018 W/cm2. The shock parameters were calculated using the relativistic Rankine–Hugoniot equations coupled to a laser piston model. The temperatures of the electrons and the ions were calculated as a function of time by using the energy conservation separately for ions and electrons. These equations are supplemented by the ideal gas equations of state (with one or three degrees of freedom) separately for ions and
Styles APA, Harvard, Vancouver, ISO, etc.
6

Henis, Zohar, Shalom Eliezer, and Erez Raicher. "Collisional shock waves induced by laser radiation pressure." Laser and Particle Beams 37, no. 03 (2019): 268–75. http://dx.doi.org/10.1017/s0263034619000478.

Texte intégral
Résumé :
AbstractThe formation of a collisional shock wave by the light pressure of a short-laser pulse at intensities in the range of 1018–1023 W/cm2 is considered. In this regime the thermodynamic parameters of the equilibrium states, before and after the shock transition, are related to the relativistic Rankine–Hugoniot equations. The electron and ion temperatures associated with these shock waves are calculated. It is shown that if the time scale of energy dissipation is shorter than the laser pulse duration a collisional shock is formed. The electrons and the ions in the shock-heated layer may hav
Styles APA, Harvard, Vancouver, ISO, etc.
7

Masse, J. E., and G. Barreau. "Surface modification by laser induced shock waves." Surface Engineering 11, no. 2 (1995): 131–32. http://dx.doi.org/10.1179/sur.1995.11.2.131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Henis, Zohar, and Shalom Eliezer. "Melting phenomenon in laser-induced shock waves." Physical Review E 48, no. 3 (1993): 2094–97. http://dx.doi.org/10.1103/physreve.48.2094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ilhom, Saidjafarzoda, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, and Zachary Thomas. "Scalable patterning using laser-induced shock waves." Optical Engineering 57, no. 04 (2018): 1. http://dx.doi.org/10.1117/1.oe.57.4.041413.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lokar, Žiga, Darja Horvat, Jaka Petelin, and Rok Petkovšek. "Ultrafast measurement of laser-induced shock waves." Photoacoustics 30 (April 2023): 100465. http://dx.doi.org/10.1016/j.pacs.2023.100465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Eliezer, Shalom, Noaz Nissim, Erez Raicher, and José Maria Martínez-Val. "Relativistic shock waves induced by ultra-high laser pressure." Laser and Particle Beams 32, no. 2 (2014): 243–51. http://dx.doi.org/10.1017/s0263034614000056.

Texte intégral
Résumé :
AbstractThis paper analyzes the one dimensional shock wave created in a planar target by the ponderomotive force induced by very high laser irradiance. The laser-induced relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and temperature are calculated here for the first time in the context of relativistic hydrodynamics. For solid targets and laser irradiance of about 2 × 1024 W/cm2, the shock wave velocity is larger than 50% of the speed of light, the shock wave compression is larger than 4 (usually of the order of 10) and
Styles APA, Harvard, Vancouver, ISO, etc.
12

Veenaas, Stefan, and Frank Vollertsen. "Forming Behavior during Joining by Laser Induced Shock Waves." Key Engineering Materials 651-653 (July 2015): 1451–56. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.1451.

Texte intégral
Résumé :
The ongoing trend of miniaturization makes hybrid joint also for the micro range necessary. Existing solutions often have restrictions due to the principle of joining. Therefore a new joining technology, which is realized by a plastic forming process based on TEA-CO2-laser induced shock waves, is used at BIAS. This technology enables the joining of different sheet materials with thicknesses between 20 µm and 300 µm. The manufacturing of the joint is an incremental process where several laser induced shock waves are needed to form the undercut, which presents the joint itself. For the analysis
Styles APA, Harvard, Vancouver, ISO, etc.
13

Asharchuk, Nika, and Evgenii Mareev. "Dynamics of Laser-Induced Shock Waves in Supercritical CO2." Fluids 7, no. 11 (2022): 350. http://dx.doi.org/10.3390/fluids7110350.

Texte intégral
Résumé :
We studied the dynamics of laser-induced shock waves in supercritical CO2 (scCO2) for different pressures and temperatures under nanosecond optical breakdown. We estimated the shock wave pressure and energy, including their evolution during shock wave propagation. The maximal shock wave pressure ~0.5 GPa was obtained in liquid-like scCO2 (155 bar 55 °C), where the fluid density is greater. However, the maximal shock wave energy ~25 mJ was achieved in sub-critical conditions (67 bar, 55 °C) due to a more homogeneous microstructure of fluid in comparison with supercritical fluid. The minimal pre
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhou, Jian Zhong, Hui Xia Liu, Chao Jun Yang, Xiang Guang Cao, Jian Jun Du, and M. X. Ni. "Non-Traditional Forming Process of Sheet Metal Based on Laser Shock Waves." Key Engineering Materials 329 (January 2007): 637–42. http://dx.doi.org/10.4028/www.scientific.net/kem.329.637.

Texte intégral
Résumé :
Traditional forming process of sheet metal is realized with Die and Mould, this technique lacks flexibility and used in the Volume production. The forming process of sheet metal based on laser shock waves is a novel and developing technique. Laser shock forming (LSF) and Laser peen forming (LPF) are two different forming process of sheet metal, both of them are based on a mechanical effect of shock waves induced by laser. In this paper, after introducing the mechanism of laser shock wave generating, these two forming process and technique feature are analyzed and compared, some research progre
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Jingyi, Wei Zhang, Ye Li, and Guangyong Jin. "The Acceleration Phenomenon of Shock Wave Induced by Nanosecond Laser Irradiating Silicon Assisted by Millisecond Laser." Photonics 10, no. 3 (2023): 260. http://dx.doi.org/10.3390/photonics10030260.

Texte intégral
Résumé :
The propagating evolution of shock waves induced by a nanosecond pulse laser (ns laser) irradiating silicon assisted by a millisecond pulse laser (ms laser) is investigated experimentally. A numerical model of 2D axisymmetric two-phase flow is established to obtain the spatial distribution of shock wave velocity. Two types of shock wave acceleration phenomenon are found. The mechanism of the shock wave acceleration phenomenon is discussed. The experimental and numerical results show that the initial stage of ms laser-induced plasma can provide the initial ions to increase probability of collis
Styles APA, Harvard, Vancouver, ISO, etc.
16

Stan, Claudiu Andrei, Koji Motomura, Gabriel Blaj, et al. "The Magnitude and Waveform of Shock Waves Induced by X-ray Lasers in Water." Applied Sciences 10, no. 4 (2020): 1497. http://dx.doi.org/10.3390/app10041497.

Texte intégral
Résumé :
The high energy densities deposited in materials by focused X-ray laser pulses generate shock waves which travel away from the irradiated region, and can generate complex wave patterns or induce phase changes. We determined the time-pressure histories of shocks induced by X-ray laser pulses in liquid water microdrops, by measuring the surface velocity of the microdrops from images recorded during the reflection of the shock at the surface. Measurements were made with ~30 µm diameter droplets using 10 keV X-rays, for X-ray pulse energies that deposited linear energy densities from 3.5 to 120 mJ
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zeng, X. C., D. P. Singh, V. Palleschi, A. Salvetti, M. De Rosa, and M. Vaselli. "Simulation and experimental studies on the evolution of a laser spark in air." Laser and Particle Beams 10, no. 4 (1992): 707–13. http://dx.doi.org/10.1017/s026303460000464x.

Texte intégral
Résumé :
Experimental and theoretical studies on the evolution of shock waves in air plasma induced by laser spark have been carried out. The systematic study of the shock wave has been performed experimentally and 1-D numerical code of radiation hydrodynamics (1-DRHC) has been used to simulate the later stage of laser spark in air. The numerical results on the propagation of shock waves and the expansion of hot plasma are presented and subsequent results on the first divergent and convergent shock waves are found to be in good agreement with the experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhu, W. H., T. X. Yu, and Z. Y. Li. "Laser-induced shock waves in PMMA confined foils." International Journal of Impact Engineering 24, no. 6-7 (2000): 641–57. http://dx.doi.org/10.1016/s0734-743x(00)00002-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Peri, M. D. Murthy, Ivin Varghese, Dong Zhou, Arun John, Chen Li, and Cetin Cetinkaya. "Nanoparticle Removal Using Laser-Induced Plasma Shock Waves." Particulate Science and Technology 25, no. 1 (2007): 91–106. http://dx.doi.org/10.1080/02726350601146457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Werdiger, M., B. Arad, E. Moshe, and S. Eliezer. "Measurements of laser-induced shock waves in aluminium." Quantum Electronics 25, no. 2 (1995): 153–56. http://dx.doi.org/10.1070/qe1995v025n02abeh000313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ayumu Yamamoto, Kazuteru Toh, and Masaaki Tamagawa. "Numerical Simulation to Investigate Interactions of Generated Underwater Micro Shock Waves and Micro Bubbles by Focusing Femtosecond Pulse Laser." Journal of Advanced Research in Numerical Heat Transfer 13, no. 1 (2023): 18–30. http://dx.doi.org/10.37934/arnht.13.1.1830.

Texte intégral
Résumé :
The purpose of this study is to elucidate the mechanism of propagation of the laser-induced micro shock waves under condition where the micro bubbles are generated. In this paper, effects of generated micro bubbles on propagation of the laser-induced micro shock waves were investigated by CFD (computational fluid dynamics). Firstly, the two models (1-D model and 1-D spherical symmetric model) were computed for comparison of the peak pressure variation of the shock waves with propagation. As for governing equations for the propagation of the shock waves, continuity equation, Euler’s momentum eq
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tagawa, Yoshiyuki, Shota Yamamoto, Keisuke Hayasaka, and Masaharu Kameda. "On pressure impulse of a laser-induced underwater shock wave." Journal of Fluid Mechanics 808 (October 26, 2016): 5–18. http://dx.doi.org/10.1017/jfm.2016.644.

Texte intégral
Résumé :
We experimentally examine a laser-induced underwater shock wave paying special attention to the pressure impulse, the time integral of the pressure evolution. Plasma formation, shock-wave expansion and the pressure in water are observed simultaneously using a combined measurement system that obtains high-resolution nanosecond-order image sequences. These detailed measurements reveal a distribution of the pressure peak which is not spherically symmetric. In contrast, remarkably, the pressure impulse is found to be symmetrically distributed for a wide range of experimental parameters, even when
Styles APA, Harvard, Vancouver, ISO, etc.
23

Cavaco, Rafael, Pedro Rodrigues, Tomás Lopes, et al. "Listening plasmas in Laser-Induced Breakdown Spectroscopy." Journal of Physics: Conference Series 2407, no. 1 (2022): 012018. http://dx.doi.org/10.1088/1742-6596/2407/1/012018.

Texte intégral
Résumé :
Abstract Apart from radiation, which constitutes the primary source of information in laser-induced breakdown spectroscopy, the process is accompanied by secondary processes such as shock wave generation and sound emission. In this manuscript, we explore the possibility of relating plasma properties with the sound from the shock waves in multiple materials, from metals to minerals. By analyzing the behavior of shock wave sound from homogeneous reference metallic targets, we investigate the relation between plasma properties and sound signal, demonstrating that distinct materials and plasma cha
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hasegawa, Kouki, Shigeru Tanaka, Ivan Bataev, et al. "Toward a Better Understanding of Shock Imprinting with Polymer Molds Using a Combination of Numerical Analysis and Experimental Research." Materials 15, no. 5 (2022): 1727. http://dx.doi.org/10.3390/ma15051727.

Texte intégral
Résumé :
In the last decade, a new technique has been developed for the nanoimprinting of thin-metal foils using laser-induced shock waves. Recent studies have proposed replacing metal or silicone molds with inexpensive polymer molds for nanoimprinting. In addition, explosive-derived shock waves provide deeper imprinting than molds, greatly simplifying the application of this technology for mass production. In this study, we focused on explosive-derived shock waves, which persist longer than laser-induced shock waves. A numerical analysis and a set of simplified molding experiments were conducted to id
Styles APA, Harvard, Vancouver, ISO, etc.
25

Harith, M. A., V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, and M. Vaselli. "Hydrodynamic evolution of laser driven diverging shock waves." Laser and Particle Beams 8, no. 1-2 (1990): 247–52. http://dx.doi.org/10.1017/s0263034600008004.

Texte intégral
Résumé :
Spherically symmetric shock waves have been produced via Nd3+ laser induced break-down in helium, nitrogen and air at pressures ranging from 760 Torr to 2300 Torr. The measurements are performed at different absorbed laser energies (E0 = 0.05 J to 2 J) at the center of the experimental spherical glass cell where the breakdown of the gas takes place. The temporal evolution of the shock wave followed by a double-pulse, doublewavelength holographic technique is described hydrodynamically well by the point strong explosion theory. The ambient gas counterpressure plays a negligible role in determin
Styles APA, Harvard, Vancouver, ISO, etc.
26

Batani, Dimitri, Wigen Nazarov, Tom Hall, et al. "Foam-induced smoothing studied through laser-driven shock waves." Physical Review E 62, no. 6 (2000): 8573–82. http://dx.doi.org/10.1103/physreve.62.8573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Azzeer, A. M., A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, and M. A. Harith. "Optical probing of laser-induced shock waves in air." Applied Physics B: Lasers and Optics 63, no. 3 (1996): 307–10. http://dx.doi.org/10.1007/s003400050088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Gilath, Irith, David Salzmann, Meir Givon, Moshe Dariel, Levi Kornblit, and Tuvia Bar-Noy. "Spallation as an effect of laser-induced shock waves." Journal of Materials Science 23, no. 5 (1988): 1825–28. http://dx.doi.org/10.1007/bf01115727.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Azzeer, A. M., A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, and M. A. Harith. "Optical probing of laser-induced shock waves in air." Applied Physics B Laser and Optics 63, no. 3 (1996): 307–10. http://dx.doi.org/10.1007/bf01833801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Tanaka, Kazuo A., Motohiko Hara, Norimasa Ozaki, et al. "Multi-layered flyer accelerated by laser induced shock waves." Physics of Plasmas 7, no. 2 (2000): 676–80. http://dx.doi.org/10.1063/1.873851.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Krasnenko,, N. P., S. V. Shamanaev, and L. G. Shamanaeva. "Propagation of laser-induced shock waves in the atmosphere." IOP Conference Series: Earth and Environmental Science 1 (May 1, 2008): 012013. http://dx.doi.org/10.1088/1755-1315/1/1/012013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Peters, N. D., D. M. Coombs, and B. Akih-Kumgeh. "Thermomechanics of laser-induced shock waves in combustible mixtures." Shock Waves 28, no. 5 (2018): 1039–51. http://dx.doi.org/10.1007/s00193-018-0850-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Veenaas, S., and F. Vollertsen. "Joining of dissimilar materials by laser induced shock waves." Materialwissenschaft und Werkstofftechnik 50, no. 8 (2019): 1006–14. http://dx.doi.org/10.1002/mawe.201800230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mareev, E. I., B. V. Rumiantsev, and F. V. Potemkin. "Study of the Parameters of Laser-Induced Shock Waves for Laser Shock Peening of Silicon." JETP Letters 112, no. 11 (2020): 739–44. http://dx.doi.org/10.1134/s0021364020230095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Eliezer, S. "Guest editor's preface: Laser and particle induced shock waves — A perspective." Laser and Particle Beams 14, no. 2 (1996): 109–11. http://dx.doi.org/10.1017/s0263034600009861.

Texte intégral
Résumé :
The science of high pressure (Eliezer et al. 1986; Eliezer & Ricci 1991) is studied experimentally in the laboratory by using static and dynamic techniques. In static experiments the sample is squeezed between pistons or anvils. The conditions in these static experiments are limited by the strength of the construction materials. In the dynamic experiments shock waves are created. Since the passage time of the shock is short in comparison with the disassembly time of shocked sample, one can do shock-wave research for any pressure that can be supplied by a driver, assuming that a proper diag
Styles APA, Harvard, Vancouver, ISO, etc.
36

HAN, BING, ZHONG-HUA SHEN, JIAN LU, and XIAO-WU NI. "LASER PROPULSION FOR TRANSPORT IN WATER ENVIRONMENT." Modern Physics Letters B 24, no. 07 (2010): 641–48. http://dx.doi.org/10.1142/s0217984910022706.

Texte intégral
Résumé :
Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, such as air and water, it is proved that transport in a water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave can be used, but also the laser-induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the
Styles APA, Harvard, Vancouver, ISO, etc.
37

Werdiger, M., B. Arad, Z. Henis, et al. "Asymptotic measurements of free surface instabilities in laser-induced shock waves." Laser and Particle Beams 14, no. 2 (1996): 133–47. http://dx.doi.org/10.1017/s0263034600009897.

Texte intégral
Résumé :
An experimental technique based on optical scattering to detect melting in release of strongly shocked materials is presented. This method is used to study the asymptotic behavior of the free surface of shock-loaded materials. After reflection of a shock wave from a metallic sample free surface, occurrence of a solid to liquid transition will induce a dynamic behavior such as mass ejection and development of instabilities. A study of the mass ejection due to laser-induced shock waves in aluminium, copper, and tin targets is presented. Shock waves of order of hundreds of kilobars to more than o
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kai, Y., W. Garen, T. Schlegel, and U. Teubner. "A novel shock tube with a laser–plasma driver." Laser and Particle Beams 35, no. 4 (2017): 610–18. http://dx.doi.org/10.1017/s0263034617000635.

Texte intégral
Résumé :
AbstractA novel method to generate shock waves in small tubes is demonstrated. A femtosecond laser is applied to generate an optical breakdown an aluminum film as target. Due to the sudden appearance of this non-equilibrium state of the target, a shock wave is induced. The shock wave is further driven by the expanding high-pressure plasma (up to 10 Mbar), which serves as a quasi-piston, until the plasma recombines. The shock wave then propagates further into a glass capillary (different square capillaries with hydraulic diameter D down to 50 µm are applied). Shock wave propagation is investiga
Styles APA, Harvard, Vancouver, ISO, etc.
39

Gottfried, Jennifer L. "Influence of exothermic chemical reactions on laser-induced shock waves." Phys. Chem. Chem. Phys. 16, no. 39 (2014): 21452–66. http://dx.doi.org/10.1039/c4cp02903h.

Texte intégral
Résumé :
Laser initiated exothermic chemical reactions produce larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface) and generate faster shock front velocities compared to inert materials.
Styles APA, Harvard, Vancouver, ISO, etc.
40

FORTOV, V. E., D. BATANI, A. V. KILPIO, et al. "The spall strength limit of matter at ultrahigh strain rates induced by laser shock waves." Laser and Particle Beams 20, no. 2 (2002): 317–20. http://dx.doi.org/10.1017/s0263034602202232.

Texte intégral
Résumé :
New results concerning the process of dynamic fracture of materials (spallation) by laser-induced shock waves are presented. The Nd-glass laser installations SIRIUS and KAMERTON were used for generation of shock waves with pressure up to 1 Mbar in plane Al alloy targets. The wavelengths of laser radiation were 1.06 and 0.53 μm, the target thickness was changed from 180 to 460 μm, and the laser radiation was focused in a spot with a 1-mm diameter on the surface of AMg6M aluminum alloy targets. Experimental results were compared to predictions of a numerical code which employed a real semiempiri
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhou, Jian Zhong, Yong Kang Zhang, Xing Quan Zhang, Chao Jun Yang, Hui Xia Liu, and Ji Chang Yang. "The Mechanism and Experimental Study on Laser Peen Forming of Sheet Metal." Key Engineering Materials 315-316 (July 2006): 607–11. http://dx.doi.org/10.4028/www.scientific.net/kem.315-316.607.

Texte intégral
Résumé :
Laser peen forming of sheet metal is a new plastic forming technique based on laser shock waves, which derives from the combination of laser shock processing and conventional shot peening technique, it uses high-power pulsed laser replacing the tiny balls to peen the surface of sheet metal, when the laser induced peak pressure of shock waves exceeds the dynamic yield strength of the materials, the sheet metal yields, resulting in an inhomogeneous residual stresses distribution in depth. The sheet metal responds to this residual stress by elongating at the peened surface and effectively bending
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhou, D., A. T. J. Kadaksham, M. D. Murthy Peri, I. Varghese, and C. Cetinkaya. "Nanoparticle Detachment Using Shock Waves." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 219, no. 3 (2005): 91–102. http://dx.doi.org/10.1243/17403499jnn45.

Texte intégral
Résumé :
The fundamentals of nanoparticle detachment at the sub-100nm level using pulsed laser-induced plasma (LIP) shock waves are investigated in the current study. Two detachment mechanisms based on rolling resistance moment and rolling by resonant frequency excitation are identified as possible detachment mechanisms for nanoparticles. The gas molecule-nanoparticle interactions are studied using the direct simulation Monte Carlo method to gain knowledge about the nature of the detachment forces and moments acting on a nanoparticle in the LIP shock wave field. The discrete nature of the gas molecules
Styles APA, Harvard, Vancouver, ISO, etc.
43

Gilath, Irith, Shalom Eliezer, Shalom Eliezer, and Tuvia Bar. "Hemispherical shock wave decay in laser-matter interaction." Laser and Particle Beams 11, no. 1 (1993): 221–25. http://dx.doi.org/10.1017/s0263034600007060.

Texte intégral
Résumé :
A high-irradiance short pulsed laser was used to generate hemispherical shock waves in planar targets. A linear relationship was obtained between the laser energy for threshold spall conditions (EL) and the cubic target thickness (d): EL = 45.3d3 + 4.9, where EL is in J and d is in mm. It is found that the laser-induced ablation pressure decays with the distance to a power slightly greater than 2.
Styles APA, Harvard, Vancouver, ISO, etc.
44

YOSHIDA, Masatake. "Study of Equation of State Using Laser-Induced Shock-Wave Compression: Generation and Properties of Laser-Induced Shock Waves." Journal of Plasma and Fusion Research 80, no. 6 (2004): 427–31. http://dx.doi.org/10.1585/jspf.80.427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Su Junhong, 苏俊宏, 吕宁 Lü Ning, and 葛锦蔓 Ge Jinman. "Characteristics of Plasma Shock Waves in Laser-Induced Film Damage." Chinese Journal of Lasers 43, no. 12 (2016): 1203003. http://dx.doi.org/10.3788/cjl201643.1203003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gilath, I., R. Englman, Z. Jaeger, A. Buchman, and H. Dodiuk. "Impact resistance of adhesive joints using laser‐induced shock waves." Journal of Laser Applications 7, no. 3 (1995): 169–76. http://dx.doi.org/10.2351/1.4745391.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Antonelli, L., F. Barbato, D. Mancelli, et al. "X-ray phase-contrast imaging for laser-induced shock waves." EPL (Europhysics Letters) 125, no. 3 (2019): 35002. http://dx.doi.org/10.1209/0295-5075/125/35002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Youssef, George, Caroline Moulet, Mark S. Goorsky, and Vijay Gupta. "Inter-wafer bonding strength characterization by laser-induced shock waves." Journal of Applied Physics 111, no. 9 (2012): 094902. http://dx.doi.org/10.1063/1.4710987.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Tinguely, Marc, Kiyonobu Ohtani, Mohamed Farhat, and Takehiko Sato. "Observation of the Formation of Multiple Shock Waves at the Collapse of Cavitation Bubbles for Improvement of Energy Convergence." Energies 15, no. 7 (2022): 2305. http://dx.doi.org/10.3390/en15072305.

Texte intégral
Résumé :
The collapse of a cavitation bubble is always associated with the radiation of intense shock waves, which are highly relevant in a variety of applications. To radiate a strong shock wave, it is necessary to converge energy at the collapse, and understanding generation processes of multiple shock waves at the collapse is a key issue. In the present study, we investigated the formation of multiple shock waves generated by the collapse of a laser-induced bubble. We used a high-speed imaging system with unprecedented spatiotemporal resolution. We developed a triggering procedure of high precision
Styles APA, Harvard, Vancouver, ISO, etc.
50

Steinhauser, Martin Oliver, and Mischa Schmidt. "Destruction of cancer cells by laser-induced shock waves: recent developments in experimental treatments and multiscale computer simulations." Soft Matter 10, no. 27 (2014): 4778–88. http://dx.doi.org/10.1039/c4sm00407h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!