Littérature scientifique sur le sujet « Lattice theory : Multiphase flow : Mathematical models »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Lattice theory : Multiphase flow : Mathematical models ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Lattice theory : Multiphase flow : Mathematical models"

1

Holdych, D. J., D. Rovas, J. G. Georgiadis, and R. O. Buckius. "An Improved Hydrodynamics Formulation for Multiphase Flow Lattice-Boltzmann Models." International Journal of Modern Physics C 09, no. 08 (1998): 1393–404. http://dx.doi.org/10.1142/s0129183198001266.

Texte intégral
Résumé :
Lattice-Boltzmann (LB) models provide a systematic formulation of effective-field computational approaches to the calculation of multiphase flow by replacing the mathematical surface of separation between the vapor and liquid with a thin transition region, across which all magnitudes change continuously. Many existing multiphase models of this sort do not satisfy the rigorous hydrodynamic constitutive laws. Here, we extend the two-dimensional, seven-speed Swift et al. LB model1 to rectangular grids (nine speeds) by using symbolic manipulation (MathematicaTM) and compare the LB model prediction
Styles APA, Harvard, Vancouver, ISO, etc.
2

HUANG, HAIBO, JUN-JIE HUANG, XI-YUN LU, and MICHAEL C. SUKOP. "ON SIMULATIONS OF HIGH-DENSITY RATIO FLOWS USING COLOR-GRADIENT MULTIPHASE LATTICE BOLTZMANN MODELS." International Journal of Modern Physics C 24, no. 04 (2013): 1350021. http://dx.doi.org/10.1142/s0129183113500216.

Texte intégral
Résumé :
Originally, the color-gradient model proposed by Rothman and Keller (R–K) was unable to simulate immiscible two-phase flows with different densities. Later, a revised version of the R–K model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase flows with high-density contrast. Some studies investigate high-density contrast two-phase flows using this revised R–K model but they are mainly focused on the stationary spherical droplet and bubble cases. Through theoretical analysis of the model, we
Styles APA, Harvard, Vancouver, ISO, etc.
3

CHIAPPINI, DANIELE, GINO BELLA, SAURO SUCCI, and STEFANO UBERTINI. "APPLICATIONS OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD TO BREAKUP AND COALESCENCE IN MULTIPHASE FLOWS." International Journal of Modern Physics C 20, no. 11 (2009): 1803–16. http://dx.doi.org/10.1142/s0129183109014746.

Texte intégral
Résumé :
We present an application of the hybrid finite-difference Lattice-Boltzmann model, recently introduced by Lee and coworkers for the numerical simulation of complex multiphase flows.1–4 Three typical test-case applications are discussed, namely Rayleigh–Taylor instability, liquid droplet break-up and coalescence. The numerical simulations of the Rayleigh–Taylor instability confirm the capability of Lee's method to reproduce literature results obtained with previous Lattice-Boltzmann models for non-ideal fluids. Simulations of two-dimensional droplet breakup reproduce the qualitative regimes obs
Styles APA, Harvard, Vancouver, ISO, etc.
4

Koplik, J., and T. J. Lasseter. "Two-Phase Flow in Random Network Models of Porous Media." Society of Petroleum Engineers Journal 25, no. 01 (1985): 89–100. http://dx.doi.org/10.2118/11014-pa.

Texte intégral
Résumé :
Abstract To explore how the microscopic geometry of a pore space affects the macroscopic characteristics of fluid flow in porous media, we have used approximate solutions of the porous media, we have used approximate solutions of the Navier-Stokes equations to calculate the flow of two fluids in random networks. The model pore space consists of an array of pores of variable radius connected to a random number of nearest neighbors by throats of variable length and radius. The various size and connectedness distributions may be arbitrarily assigned, as are the wetting characteristics of the two
Styles APA, Harvard, Vancouver, ISO, etc.
5

Huang, Haibo, Lei Wang, and Xi-yun Lu. "Evaluation of three lattice Boltzmann models for multiphase flows in porous media." Computers & Mathematics with Applications 61, no. 12 (2011): 3606–17. http://dx.doi.org/10.1016/j.camwa.2010.06.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Uzun, Ilkay, Basak Kurtoglu, and Hossein Kazemi. "Multiphase Rate-Transient Analysis in Unconventional Reservoirs: Theory and Application." SPE Reservoir Evaluation & Engineering 19, no. 04 (2016): 553–66. http://dx.doi.org/10.2118/171657-pa.

Texte intégral
Résumé :
Summary In unconventional reservoirs, production data are generally analyzed by use of rate-transient techniques derived from single-phase linear-flow models. Such linear-flow models use rate-normalized pressure, which is pressure drop divided by reservoir-flow rate vs. square root of time. In practice, the well-fluid production includes water, oil, and gas. The oil can be light oil, volatile oil, and gas/condensate as in the Bakken, Eagle Ford, and Barnett, respectively. Thus, single-phase analysis needs modification to account for production of fluid mixtures. In this paper, we present a mul
Styles APA, Harvard, Vancouver, ISO, etc.
7

Han, Xin Feng, Jian Long Li, and Ning Xu. "CFD Simulation of the Fluidized Bed Applied in the Synthesis of Benzene Series Organosilicon." Advanced Materials Research 753-755 (August 2013): 2663–66. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.2663.

Texte intégral
Résumé :
The mathematical model of gas-solid flow 2D fluidized bed was established. The CFD simulation was carried out with commercial software FLUENT6.3 by using Eulerian-Eulerian multiphase models, based on the kinetic theory of granular flow and PC-SIMPLE algorithm. In order to provide a basis on optimizing the operating conditions of the fluidized bed applied in benzene series organosilicon reactor, the processes of bubble formation, growth and disappearance under different cases were analyzed.
Styles APA, Harvard, Vancouver, ISO, etc.
8

SBRAGAGLIA, M., K. SUGIYAMA, and L. BIFERALE. "Wetting failure and contact line dynamics in a Couette flow." Journal of Fluid Mechanics 614 (October 16, 2008): 471–93. http://dx.doi.org/10.1017/s0022112008003649.

Texte intégral
Résumé :
Liquid–liquid wetting failure is investigated in a two-dimensional Couette system with two immiscible fluids of arbitrary viscosity. The problem is solved exactly using a sharp interface treatment of hydrodynamics (lubrication theory) as a function of the control parameters – capillary number, viscosity ratio and separation of scale – i.e. the slip length versus the macroscopic size of the system. The transition at a critical capillary number, from a stationary to a non-stationary interface, is studied while changing the control parameters. Comparisons with similar existing analyses for other
Styles APA, Harvard, Vancouver, ISO, etc.
9

LEI, G., P. C. DONG, S. Y. MO, S. H. GAI, and Z. S. WU. "A NOVEL FRACTAL MODEL FOR TWO-PHASE RELATIVE PERMEABILITY IN POROUS MEDIA." Fractals 23, no. 02 (2015): 1550017. http://dx.doi.org/10.1142/s0218348x15500176.

Texte intégral
Résumé :
Multiphase flow in porous media is very important in various scientific and engineering fields. It has been shown that relative permeability plays an important role in determination of flow characteristics for multiphase flow. The accurate prediction of multiphase flow in porous media is hence highly important. In this work, a novel predictive model for relative permeability in porous media is developed based on the fractal theory. The predictions of two-phase relative permeability by the current mathematical models have been validated by comparing with available experimental data. The predict
Styles APA, Harvard, Vancouver, ISO, etc.
10

PREMNATH, KANNAN N., and JOHN ABRAHAM. "LATTICE BOLTZMANN SIMULATIONS OF DROP–DROP INTERACTIONS IN TWO-PHASE FLOWS." International Journal of Modern Physics C 16, no. 01 (2005): 25–44. http://dx.doi.org/10.1142/s0129183105006930.

Texte intégral
Résumé :
In this paper, three-dimensional computations of drop–drop interactions using the lattice Boltzmann method (LBM) are reported. The LBM multiphase flow model employed is evaluated for single drop problems and binary drop interactions. These include the verification of Laplace–Young relation for static drops, drop oscillations, and drop deformation and breakup in simple shear flow. The results are compared with experimental data, analytical solutions and numerical solutions based on other computational methods, as applicable. Satisfactory agreement is shown. Initial studies of drop–drop interact
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "Lattice theory : Multiphase flow : Mathematical models"

1

Wagner, Alexander. "Theory and applications of the lattice Boltzmann method." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:882b9026-22cd-4e77-95e5-aca62f93df11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rossi, Louis Frank, and Louis Frank Rossi. "A spreading blob vortex method for viscous bounded flows." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186562.

Texte intégral
Résumé :
In this dissertation, I introduce a vortex method that is generally applicable to any two-dimensional, incompressible flow with or without boundaries. This method is deterministic, accurate, convergent, naturally adaptive, geometry independent and fully localized. For viscous flows, the vorticity distribution of each vortex element must evolve in addition to following a Lagrangian trajectory. My method relies upon an idea called core spreading. Core spreading is inconsistent by itself, but I have corrected it with a deterministic process known as "vortex fission" where one "fat" vortex is repl
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Lattice theory : Multiphase flow : Mathematical models"

1

Dobran, F. Theory of structured multiphase mixtures. Springer-Verlag, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gidaspow, Dimitri. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. Academic Press, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gray, William G. Introduction to the thermodynamically constrained averaging theory for porous medium systems. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

I, Plotnikov Pavel, ed. Small divisor problem in the theory of three-dimensional water gravity waves. American Mathematical Society, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sukop, Michael, Haibo Huang, and Xiyun Lu. Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley-Interscience, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sukop, Michael, Haibo Huang, and Xiyun Lu. Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley & Sons, Incorporated, John, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sukop, Michael, Haibo Huang, and Xiyun Lu. Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley & Sons, Incorporated, John, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1959-, Fox Rodney O., and Marchisio Daniele L, eds. Multiphase reacting flows: Modelling and simulation. Springer, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Computational Techniques for Complex Transport Phenomena. Cambridge University Press, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Lattice theory : Multiphase flow : Mathematical models"

1

Ran, Qiquan. "Discretization Methods on Unstructured Grids and Mathematical Models of Multiphase Flow in Multiple Media at Different Scales." In Unconventional Tight Reservoir Simulation: Theory, Technology and Practice. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-32-9848-4_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Lattice theory : Multiphase flow : Mathematical models"

1

Guzella, Matheus, Luiz Czelusniak, Vinicius Pessoa Mapelli, and Luben Cabezas Gómez. "COMPARISON OF ENERGY MODELS BASED ON DISCRETE INTERFACE THEORY FOR MESOSCALE SIMULATION OF BOILING USING LATTICE BOLTZMANN METHOD." In 5th Multiphase Flow Journeys. ABCM, 2019. http://dx.doi.org/10.26678/abcm.jem2019.jem19-0015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mukherjee, Shiladitya, J. Vernon Cole, Kunal Jain, and Ashok Gidwani. "Water Management in PEM Fuel Cell: A Lattice-Boltzmann Modeling Approach." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85182.

Texte intégral
Résumé :
In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (∼150–350μm), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analys
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhou, Wenning, Yuying Yan, and Xiaoping Luo. "Numerical Investigation on Interfacial Phenomena of Ferrofluid by Lattice Boltzmann Method." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73173.

Texte intégral
Résumé :
Ferrofluid, also known as magnetic fluid, is a new-type fluid whose property and morphology can be controlled by the external magnetic field. It mainly consists of carrier fluid and suspended magnetic particles (diameter usually 10 nanometers or less). Ferrofluids behave as a smart or functional fluid and has been finding more and more applications in a variety of fields such as electronic packing, mechanical engineering, aerospace, bioengineering, and thermal engineering. It has therefore recently attracted many researchers’ interest. Due to the nanosize particles and complex interactions bet
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!