Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Lattice theory.

Articles de revues sur le sujet « Lattice theory »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Lattice theory ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Day, Alan. "Doubling Constructions in Lattice Theory." Canadian Journal of Mathematics 44, no. 2 (1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.

Texte intégral
Résumé :
AbstractThis paper examines the simultaneous doubling of multiple intervals of a lattice in great detail. In the case of a finite set of W-failure intervals, it is shown that there in a unique smallest lattice mapping homomorphically onto the original lattice, in which the set of W-failures is removed. A nice description of this new lattice is given. This technique is used to show that every lattice that is a bounded homomorphic image of a free lattice has a projective cover. It is also used to give a sufficient condition for a fintely presented lattice to be weakly atomic and shows that the p
Styles APA, Harvard, Vancouver, ISO, etc.
2

Harremoës, Peter. "Entropy Inequalities for Lattices." Entropy 20, no. 10 (2018): 784. http://dx.doi.org/10.3390/e20100784.

Texte intégral
Résumé :
We study entropy inequalities for variables that are related by functional dependencies. Although the powerset on four variables is the smallest Boolean lattice with non-Shannon inequalities, there exist lattices with many more variables where the Shannon inequalities are sufficient. We search for conditions that exclude the existence of non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group. In order to formulate and prove the results, one has to bridge lattice theory, group theory,
Styles APA, Harvard, Vancouver, ISO, etc.
3

Flaut, Cristina, Dana Piciu, and Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices." Axioms 13, no. 4 (2024): 267. http://dx.doi.org/10.3390/axioms13040267.

Texte intégral
Résumé :
Many papers have been devoted to applying fuzzy sets to algebraic structures. In this paper, based on ideals, we investigate residuated lattices from fuzzy set theory, lattice theory, and coding theory points of view, and some applications of fuzzy sets in residuated lattices are presented. Since ideals are important concepts in the theory of algebraic structures used for formal fuzzy logic, first, we investigate the lattice of fuzzy ideals in residuated lattices and study some connections between fuzzy sets associated to ideals and Hadamard codes. Finally, we present applications of fuzzy set
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ježek, J., P. PudláK, and J. Tůma. "On equational theories of semilattices with operators." Bulletin of the Australian Mathematical Society 42, no. 1 (1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.

Texte intégral
Résumé :
In 1986, Lampe presented a counterexample to the conjecture that every algebraic lattice with a compact greatest element is isomorphic to the lattice of extensions of an equational theory. In this paper we investigate equational theories of semi-lattices with operators. We construct a class of lattices containing all infinitely distributive algebraic lattices with a compact greatest element and closed under the operation of taking the parallel join, such that every element of the class is isomorphic to the lattice of equational theories, extending the theory of a semilattice with operators.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ježek, Jaroslav, and George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories." Journal of Symbolic Logic 60, no. 4 (1995): 1242–50. http://dx.doi.org/10.2307/2275885.

Texte intégral
Résumé :
By an equational theory we mean a set of equations from some fixed language which is closed with respect to logical consequences. We regard equations as universal sentences whose quantifier-free parts are equations between terms. In our notation, we suppress the universal quantifiers. Once a language has been fixed, the collection of all equational theories for that language is a lattice ordered by set inclusion The meet in this lattice is simply intersection; the join of a collection of equational theories is the equational theory axiomatized by the union of the collection. In this paper we p
Styles APA, Harvard, Vancouver, ISO, etc.
6

McCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup." Journal of Group Theory 21, no. 3 (2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.

Texte intégral
Résumé :
Abstract The Chermak–Delgado lattice of a finite group is a modular, self-dual sublattice of the lattice of subgroups of G. The least element of the Chermak–Delgado lattice of G is known as the Chermak–Delgado subgroup of G. This paper concerns groups with a trivial Chermak–Delgado subgroup. We prove that if the Chermak–Delgado lattice of such a group is lattice isomorphic to a Cartesian product of lattices, then the group splits as a direct product, with the Chermak–Delgado lattice of each direct factor being lattice isomorphic to one of the lattices in the Cartesian product. We establish man
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ballal, Sachin, and Vilas Kharat. "Zariski topology on lattice modules." Asian-European Journal of Mathematics 08, no. 04 (2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.

Texte intégral
Résumé :
Let [Formula: see text] be a lattice module over a [Formula: see text]-lattice [Formula: see text] and [Formula: see text] be the set of all prime elements in lattice modules [Formula: see text]. In this paper, we study the generalization of the Zariski topology of multiplicative lattices [N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II: Minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988) 53–67; N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a uni
Styles APA, Harvard, Vancouver, ISO, etc.
8

Futa, Yuichi, та Yasunari Shidama. "Lattice of ℤ-module". Formalized Mathematics 24, № 1 (2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.

Texte intégral
Résumé :
Summary In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].
Styles APA, Harvard, Vancouver, ISO, etc.
9

Horváth, Eszter K., Sándor Radeleczki, Branimir Šešelja, and Andreja Tepavčević. "A Note on Cuts of Lattice-Valued Functions and Concept Lattices." Mathematica Slovaca 73, no. 3 (2023): 583–94. http://dx.doi.org/10.1515/ms-2023-0043.

Texte intégral
Résumé :
ABSTRACT Motivated by applications of lattice-valued functions (lattice-valued fuzzy sets) in the theory of ordered structures, we investigate a special kind of posets and lattices induced by these mappings. As a framework, we use the Formal Concept Analysis in which these ordered structures can be naturally observed. We characterize the lattice of cut sets and the Dedekind-MacNeille completion of the set of images of a lattice valued function by suitable concept lattices and we give necessary and sufficient conditions under which these lattices coincide. In addition, we give conditions under
Styles APA, Harvard, Vancouver, ISO, etc.
10

Luo, Congwen. "S-Lattice Congruences of S-Lattices." Algebra Colloquium 19, no. 03 (2012): 465–72. http://dx.doi.org/10.1142/s1005386712000326.

Texte intégral
Résumé :
In this paper, the S-lattices are introduced as a representation of lattice-ordered monoids. The smallest S-lattice congruence induced by a relation on an S-lattice is characterized and the correspondence between the S-lattice congruences and S-ideals in an S-distributive lattice is discussed. These generalize some recent results of lattices and lattice-ordered semigroups.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices." Nuclear Physics B - Proceedings Supplements 30 (March 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

JANSEN, KARL. "LATTICE FIELD THEORY." International Journal of Modern Physics E 16, no. 09 (2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.

Texte intégral
Résumé :
Starting with the example of the quantum mechanical harmonic oscillator, we develop the concept of euclidean lattice field theory. After describing Wilson's formulation of quantum chromodynamics on the lattice, we will introduce modern lattice QCD actions which greatly reduce lattice artefacts or are even chiral invariant. The substantial algorithmic improvements of the last couple of years will be shown which led to a real breakthrough for dynamical Wilson fermion simulations. Finally, we will present some results of present simulations with dynamical quarks and demonstrate that nowadays even
Styles APA, Harvard, Vancouver, ISO, etc.
13

Martinelli, G. "Lattice field theory." Nuclear Physics B - Proceedings Supplements 16 (August 1990): 16–29. http://dx.doi.org/10.1016/0920-5632(90)90456-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Capitani, S. "Lattice perturbation theory." Physics Reports 382, no. 3-5 (2003): 113–302. http://dx.doi.org/10.1016/s0370-1573(03)00211-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Morningstar, Colin J. "Lattice perturbation theory." Nuclear Physics B - Proceedings Supplements 47, no. 1-3 (1996): 92–99. http://dx.doi.org/10.1016/0920-5632(96)00035-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Pliev, M. A. "Каждая латеральная полоса является ядром положительного ортогонально аддитивного оператора". Владикавказский математический журнал, № 4 (23 грудня 2021): 115–18. http://dx.doi.org/10.46698/e4075-8887-4097-s.

Texte intégral
Résumé :
{In this paper we continue a study of relationships between the lateral partial order $\sqsubseteq$ in a vector lattice (the relation $x \sqsubseteq y$ means that $x$ is a fragment of $y$) and the theory of orthogonally additive operators on vector lattices. It was shown in~\cite{pMPP} that the concepts of lateral ideal and lateral band play the same important role in the theory of orthogonally additive operators as ideals and bands play in the theory for linear operators in vector lattices. We show that, for a vector lattice $E$ and a lateral band $G$ of~$E$, there exists a vector lattice~$F$
Styles APA, Harvard, Vancouver, ISO, etc.
17

Gutman, A. E. "Monotone Operators in Vector Lattices and Lattice-Normed Spaces." Siberian Mathematical Journal 66, no. 3 (2025): 826–31. https://doi.org/10.1134/s0037446625030188.

Texte intégral
Résumé :
Abstract We show that every monotone linear operator from a vector lattice to a lattice-normed space can be represented as the composition of a surjective lattice homomorphism and a linear isometry. We also give some applications to the theory of continuous and measurable bundles of Banach lattices.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pardo-Guerra, Sebastián, Hugo Alberto Rincón-Mejía, and Manuel Gerardo Zorrilla-Noriega. "Some isomorphic big lattices and some properties of lattice preradicals." Journal of Algebra and Its Applications 19, no. 07 (2019): 2050140. http://dx.doi.org/10.1142/s0219498820501406.

Texte intégral
Résumé :
According to Albu and Iosif, [2, Definition 1.1] a lattice preradical is a subfunctor of the identity functor on the category [Formula: see text] of linear modular lattices, whose objects are the complete modular lattices and whose morphisms are linear morphisms. In this paper, we describe some big lattices which are isomorphic to the big lattice of lattice preradicals and we study the four classical operations that occur in the lattice of preradicals of modules over a ring [Formula: see text], namely, the join, the meet, the product and the coproduct. We show that some results about the latti
Styles APA, Harvard, Vancouver, ISO, etc.
19

NEBE, GABRIELE. "ON AUTOMORPHISMS OF EXTREMAL EVEN UNIMODULAR LATTICES." International Journal of Number Theory 09, no. 08 (2013): 1933–59. http://dx.doi.org/10.1142/s179304211350067x.

Texte intégral
Résumé :
The automorphism groups of the three known extremal even unimodular lattices of dimension 48 and the one of dimension 72 are determined using the classification of finite simple groups. Restrictions on the possible automorphisms of 48-dimensional extremal lattices are obtained. We classify all extremal lattices of dimension 48 having an automorphism of order m with φ(m) > 24. In particular the lattice P48nis the unique extremal 48-dimensional lattice that arises as an ideal lattice over a cyclotomic number field.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Borcherds, Richard E. "Lattices like the Leech lattice." Journal of Algebra 130, no. 1 (1990): 219–34. http://dx.doi.org/10.1016/0021-8693(90)90110-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Han, Bao Chuan, Ya Jun Du, Chang Wang, and Jing Xu. "A Concept Lattice Merger Approach for Ontology Construction." Advanced Materials Research 181-182 (January 2011): 667–72. http://dx.doi.org/10.4028/www.scientific.net/amr.181-182.667.

Texte intégral
Résumé :
The method of merging concept lattice in domain ontology construction can describe the implicit concepts and relationships between concepts more appropriately for semantic representation and query match. In order to enrich semantic query, the paper intends to apply the theory of Formal Concept Analysis (FCA) to establish source concept lattices, through which the domain concepts are extracted from source concept lattices to generate the optimized concept lattice. Then, the ontology tree is generated by lattice mapping ontology algorithm (LMOA) combing some hierarchical relations in the optimiz
Styles APA, Harvard, Vancouver, ISO, etc.
22

Han, Bao Chuan, Ya Jun Du, Chang Wang, and Jing Xu. "A Concept Lattice Merger Approach for Ontology Construction." Advanced Materials Research 181-182 (January 2011): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amr.181-182.754.

Texte intégral
Résumé :
The method of merging concept lattice in domain ontology construction can describe the implicit concepts and relationships between concepts more appropriately for semantic representation and query match. In order to enrich semantic query, the paper intends to apply the theory of Formal Concept Analysis (FCA) to establish source concept lattices, through which the domain concepts are extracted from source concept lattices to generate the optimized concept lattice. Then, the ontology tree is generated by lattice mapping ontology algorithm (LMOA) combing some hierarchical relations in the optimiz
Styles APA, Harvard, Vancouver, ISO, etc.
23

Frapolli, Nicolò, Shyam Chikatamarla, and Ilya Karlin. "Theory, Analysis, and Applications of the Entropic Lattice Boltzmann Model for Compressible Flows." Entropy 22, no. 3 (2020): 370. http://dx.doi.org/10.3390/e22030370.

Texte intégral
Résumé :
The entropic lattice Boltzmann method for the simulation of compressible flows is studied in detail and new opportunities for extending operating range are explored. We address limitations on the maximum Mach number and temperature range allowed for a given lattice. Solutions to both these problems are presented by modifying the original lattices without increasing the number of discrete velocities and without altering the numerical algorithm. In order to increase the Mach number, we employ shifted lattices while the magnitude of lattice speeds is increased in order to extend the temperature r
Styles APA, Harvard, Vancouver, ISO, etc.
24

Decker, Karsten M., and Philippe de Forcrand. "Pure SU(2) lattice gauge theory on 324 lattices." Nuclear Physics B - Proceedings Supplements 17 (September 1990): 567–70. http://dx.doi.org/10.1016/0920-5632(90)90315-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sinclair, R. "Calculations on infinite lattices applied to lattice gauge theory." Physical Review D 42, no. 12 (1990): 4182–85. http://dx.doi.org/10.1103/physrevd.42.4182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

CIACH, A., and G. STELL. "MESOSCOPIC FIELD THEORY OF IONIC SYSTEMS." International Journal of Modern Physics B 19, no. 21 (2005): 3309–43. http://dx.doi.org/10.1142/s0217979205032176.

Texte intégral
Résumé :
A mesoscopic field theory for the primitive model of ionic systems with additional, short-range interactions is presented. Generic models in continuum space and with positions of the ions restricted to lattice sites of various lattices are described in detail. We describe briefly the field-theoretic methods and review the foundations of the mesoscopic description. The types of phase diagrams predicted by our theory for different versions of the model are presented and discussed. They all agree with recent simulations. On the quantitative level our theory yields an RPM tricritical-point locatio
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chashchin, Georgy Sergeevich. "Lattice Boltzmann method: simulation of isothermal low-speed flows." Keldysh Institute Preprints, no. 99 (2021): 1–31. http://dx.doi.org/10.20948/prepr-2021-99.

Texte intégral
Résumé :
In this work, lattice Boltzmann method on standard lattices was descript as one of the modern method of computation fluid dynamics. The article has main theorems, which prove computational algorithm, different type’s boundary conditions and defect in Galilean invariance. Moreover, the paper has some theoretical background about physical kinetic theory, Hermite polynomials and numeric integration. Here has not any new scientist discoveries, but has explanation of basic lattice Boltzmann theory.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Hartung, Tobias, Karl Jansen, Frances Y. Kuo, Hernan Leövey, Dirk Nuyens, and Ian H. Sloan. "Lattice meets lattice: Application of lattice cubature to models in lattice gauge theory." Journal of Computational Physics 443 (October 2021): 110527. http://dx.doi.org/10.1016/j.jcp.2021.110527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hitzler, Pascal, Markus Krötzsch, and Guo-Qiang Zhang. "A Categorical View on Algebraic Lattices in Formal Concept Analysis." Fundamenta Informaticae 74, no. 2-3 (2006): 301–28. https://doi.org/10.3233/fun-2006-742-306.

Texte intégral
Résumé :
Formal concept analysis has grown from a new branch of the mathematical field of lattice theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from this theory, we believe that it can be enriched with notions such as approximation by computation or representability. The latter are commonly studied in denotational semantics and domain theory and captured most prominently by the notion of algebraicity, e.g. of lattices. In this paper, we explore the notion of algebraicity in formal concept analysis from a category-theoretical perspective. To this end, we
Styles APA, Harvard, Vancouver, ISO, etc.
30

Symonds, Peter. "Relative characters for H-projective RG-lattices." Mathematical Proceedings of the Cambridge Philosophical Society 104, no. 2 (1988): 207–13. http://dx.doi.org/10.1017/s0305004100065397.

Texte intégral
Résumé :
If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of
Styles APA, Harvard, Vancouver, ISO, etc.
31

WEHRUNG, FRIEDRICH. "FROM JOIN-IRREDUCIBLES TO DIMENSION THEORY FOR LATTICES WITH CHAIN CONDITIONS." Journal of Algebra and Its Applications 01, no. 02 (2002): 215–42. http://dx.doi.org/10.1142/s0219498802000148.

Texte intégral
Résumé :
For a finite lattice L, the congruence lattice Con L of L can be easily computed from the partially ordered set J (L) of join-irreducible elements of L and the join-dependency relation DL on J (L). We establish a similar version of this result for the dimension monoid Dim L of L, a natural precursor of Con L. For L join-semidistributive, this result takes the following form: Theorem 1. Let L be a finite join-semidistributive lattice. Then Dim L is isomorphic to the commutative monoid defined by generators Δ(p), for p ∈ J(L), and relations [Formula: see text] As a consequence of this, we obtain
Styles APA, Harvard, Vancouver, ISO, etc.
32

Periwal, Vipul. "Improving lattice perturbation theory." Physical Review D 53, no. 5 (1996): 2605–9. http://dx.doi.org/10.1103/physrevd.53.2605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wetterich, C. "Scalar lattice gauge theory." Nuclear Physics B 876, no. 1 (2013): 147–86. http://dx.doi.org/10.1016/j.nuclphysb.2013.08.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wetterich, C. "Linear lattice gauge theory." Nuclear Physics B 884 (July 2014): 44–65. http://dx.doi.org/10.1016/j.nuclphysb.2014.04.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lepage, G. Peter, and Paul B. Mackenzie. "Renormalized lattice perturbation theory." Nuclear Physics B - Proceedings Supplements 20 (May 1991): 173–76. http://dx.doi.org/10.1016/0920-5632(91)90902-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Münster, Gernot. "Lattice quantum field theory." Scholarpedia 5, no. 12 (2010): 8613. http://dx.doi.org/10.4249/scholarpedia.8613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Iseki, K. "Contribution to lattice theory." Publicationes Mathematicae Debrecen 2, no. 3-4 (2022): 194–203. http://dx.doi.org/10.5486/pmd.1952.2.3-4.07.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Dimm, W., G. Peter Lepage, and Paul B. Mackenzie. "Nonperturbative “lattice perturbation theory”." Nuclear Physics B - Proceedings Supplements 42, no. 1-3 (1995): 403–5. http://dx.doi.org/10.1016/0920-5632(95)00263-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Freese, Ralph. "Directions in lattice theory." Algebra Universalis 31, no. 3 (1994): 416–29. http://dx.doi.org/10.1007/bf01221796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bullivant, Alex, Marcos Calçada, Zoltán Kádár, João Faria Martins, and Paul Martin. "Higher lattices, discrete two-dimensional holonomy and topological phases in (3 + 1)D with higher gauge symmetry." Reviews in Mathematical Physics 32, no. 04 (2019): 2050011. http://dx.doi.org/10.1142/s0129055x20500117.

Texte intégral
Résumé :
Higher gauge theory is a higher order version of gauge theory that makes possible the definition of 2-dimensional holonomy along surfaces embedded in a manifold where a gauge 2-connection is present. In this paper, we study Hamiltonian models for discrete higher gauge theory on a lattice decomposition of a manifold. We show that a construction for higher lattice gauge theory is well-defined, including in particular a Hamiltonian for topological phases of matter in [Formula: see text] dimensions. Our construction builds upon the Kitaev quantum double model, replacing the finite gauge connection
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tewary, V. K., and Robb Thomson. "Lattice statics of interfaces and interfacial cracks in bimaterial solids." Journal of Materials Research 7, no. 4 (1992): 1018–28. http://dx.doi.org/10.1557/jmr.1992.1018.

Texte intégral
Résumé :
A method for calculating lattice statics Green's function is described for a bimaterial lattice or a bicrystal containing a plane interface. The method involves creation of two half space lattices containing free surfaces and then joining them to form a bicrystal. The two half space lattices may have different structures as in a two-phase bicrystal or may be of the same type but joined at different orientations to form a grain boundary interface. The method is quite general but, in this paper, has been applied only to a simple model bicrystal formed by two simple cubic lattices with nearest ne
Styles APA, Harvard, Vancouver, ISO, etc.
42

de la Maza, Ana Cecilia, and Remo Moresi. "Hermitean (semi) lattices and Rolf’s lattice." Algebra universalis 66, no. 1-2 (2011): 49–62. http://dx.doi.org/10.1007/s00012-011-0141-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

MONAHAN, C. J. "THE BEAUTY OF LATTICE PERTURBATION THEORY: THE ROLE OF LATTICE PERTURBATION THEORY IN B PHYSICS." Modern Physics Letters A 27, no. 37 (2012): 1230040. http://dx.doi.org/10.1142/s0217732312300406.

Texte intégral
Résumé :
As new experimental data arrive from the LHC the prospect of indirectly detecting new physics through precision tests of the Standard Model grows more exciting. Precise experimental and theoretical inputs are required to test the unitarity of the CKM matrix and to search for new physics effects in rare decays. Lattice QCD calculations of non-perturbative inputs have reached a precision at the level of a few percent; in many cases aided by the use of lattice perturbation theory. This review examines the role of lattice perturbation theory in B physics calculations on the lattice in the context
Styles APA, Harvard, Vancouver, ISO, etc.
44

Grabowski, Adam. "Stone Lattices." Formalized Mathematics 23, no. 4 (2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.

Texte intégral
Résumé :
Summary The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which is dense. The core of the paper is of course the idea of Stone identity $$a^* \sqcup a^{**}
Styles APA, Harvard, Vancouver, ISO, etc.
45

Demonet, Laurent, Osamu Iyama, Nathan Reading, Idun Reiten та Hugh Thomas. "Lattice theory of torsion classes: Beyond 𝜏-tilting theory". Transactions of the American Mathematical Society, Series B 10, № 18 (2023): 542–612. http://dx.doi.org/10.1090/btran/100.

Texte intégral
Résumé :
The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set t o r s A \mathsf {tors} A of torsion classes over a finite-dimensional algebra A A . We show that t o r s A \mathsf {tors} A is a complete lattice which enjoys very strong properties, as bialgebraicity and complete semidistributivity. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of t o r s A \mathsf {tors} A . In particular, we give a representation-theoretical interpretat
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ge, Mo-Lin, Liangzhong Hu, and Yiwen Wang. "KNOT THEORY, PARTITION FUNCTION AND FRACTALS." Journal of Knot Theory and Its Ramifications 05, no. 01 (1996): 37–54. http://dx.doi.org/10.1142/s0218216596000047.

Texte intégral
Résumé :
In this paper we first provide the open chain and the closed chain method to calculate the partition functions of the typical fractal lattices, i.e. a special kind of Sierpinski carpets(SC) and the triangular Sierpinski gaskets(SG). We then apply knot theory to fractal lattices by changing lattice graphs into link diagrams according to the interaction models, and explicitly obtain the partition functions of a special SC for the edge interaction models. These partition functions are also the knot invariants of the corresponding link diagrams. This is the first time that topology enters into fra
Styles APA, Harvard, Vancouver, ISO, etc.
47

BRAZHNYI, V. A., and V. V. KONOTOP. "THEORY OF NONLINEAR MATTER WAVES IN OPTICAL LATTICES." Modern Physics Letters B 18, no. 14 (2004): 627–51. http://dx.doi.org/10.1142/s0217984904007190.

Texte intégral
Résumé :
We consider several effects of the matter wave dynamics which can be observed in Bose–Einstein condensates embedded into optical lattices. For low-density condensates, we derive approximate evolution equations, the form of which depends on relation among the main spatial scales of the system. Reduction of the Gross–Pitaevskii equation to a lattice model (the tight-binding approximation) is also presented. Within the framework of the obtained models, we consider modulational instability of the condensate, solitary and periodic matter waves, paying special attention to different limits of the so
Styles APA, Harvard, Vancouver, ISO, etc.
48

Liu, Keh-Fei. "Many body theory and lattice gauge theory." Physics Reports 242, no. 4-6 (1994): 463–69. http://dx.doi.org/10.1016/0370-1573(94)90179-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Estaji, A. A., M. R. Hooshmandasl, and B. Davvaz. "Rough set theory applied to lattice theory." Information Sciences 200 (October 2012): 108–22. http://dx.doi.org/10.1016/j.ins.2012.02.060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Oishi-Tomiyasu, Ryoko. "Ideas of lattice-basis reduction theory for error-stable Bravais lattice determination and ab initio indexing." Acta Crystallographica Section A Foundations and Advances 80, no. 4 (2024): 339–50. http://dx.doi.org/10.1107/s2053273324004418.

Texte intégral
Résumé :
In ab initio indexing, for a given diffraction/scattering pattern, the unit-cell parameters and the Miller indices assigned to reflections in the pattern are determined simultaneously. `Ab initio' means a process performed without any good prior information on the crystal lattice. Newly developed ab initio indexing software is frequently reported in crystallography. However, it is not widely recognized that use of a Bravais lattice determination method, which is tolerant of experimental errors, can simplify indexing algorithms and increase their success rates. One of the goals of this article
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!