Articles de revues sur le sujet « Legionnaires' Disease Mathematical models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Legionnaires' Disease Mathematical models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Cassell, Kelsie, Paul Gacek, Therese Rabatsky-Ehr, Susan Petit, Matthew Cartter, and Daniel M. Weinberger. "Estimating the True Burden of Legionnaires’ Disease." American Journal of Epidemiology 188, no. 9 (June 21, 2019): 1686–94. http://dx.doi.org/10.1093/aje/kwz142.
Texte intégralDobson, A. "Mathematical models for emerging disease." Science 346, no. 6215 (December 11, 2014): 1294–95. http://dx.doi.org/10.1126/science.aaa3441.
Texte intégralBakshi, Suruchi, Vijayalakshmi Chelliah, Chao Chen, and Piet H. van der Graaf. "Mathematical Biology Models of Parkinson's Disease." CPT: Pharmacometrics & Systems Pharmacology 8, no. 2 (November 2, 2018): 77–86. http://dx.doi.org/10.1002/psp4.12362.
Texte intégralGrassly, Nicholas C., and Christophe Fraser. "Mathematical models of infectious disease transmission." Nature Reviews Microbiology 6, no. 6 (May 13, 2008): 477–87. http://dx.doi.org/10.1038/nrmicro1845.
Texte intégralKLEIN, EILI, RAMANAN LAXMINARAYAN, DAVID L. SMITH, and CHRISTOPHER A. GILLIGAN. "Economic incentives and mathematical models of disease." Environment and Development Economics 12, no. 5 (October 2007): 707–32. http://dx.doi.org/10.1017/s1355770x0700383x.
Texte intégralMeltzer, M. I., and R. A. I. Norval. "Mathematical models of tick-borne disease transmission." Parasitology Today 9, no. 8 (August 1993): 277–78. http://dx.doi.org/10.1016/0169-4758(93)90116-w.
Texte intégralDonovan, Graham M. "Multiscale mathematical models of airway constriction and disease." Pulmonary Pharmacology & Therapeutics 24, no. 5 (October 2011): 533–39. http://dx.doi.org/10.1016/j.pupt.2011.01.003.
Texte intégralMedley, Graham F. "Mathematical models of tick-borne disease transmission: Reply." Parasitology Today 9, no. 8 (August 1993): 292. http://dx.doi.org/10.1016/0169-4758(93)90123-w.
Texte intégralDUNN, C. E., B. ROWLINGSON, R. S. BHOPAL, and P. DIGGLE. "Meteorological conditions and incidence of Legionnaires' disease in Glasgow, Scotland: application of statistical modelling." Epidemiology and Infection 141, no. 4 (June 12, 2012): 687–96. http://dx.doi.org/10.1017/s095026881200101x.
Texte intégralDe Gaetano, Andrea, Thomas Hardy, Benoit Beck, Eyas Abu-Raddad, Pasquale Palumbo, Juliana Bue-Valleskey, and Niels Pørksen. "Mathematical models of diabetes progression." American Journal of Physiology-Endocrinology and Metabolism 295, no. 6 (December 2008): E1462—E1479. http://dx.doi.org/10.1152/ajpendo.90444.2008.
Texte intégralCabanlit, Epimaco A., Elsie M. Cabanlit, Steiltjes M. Cabanlit, and Roxan Eve M. Cabanlit. "Mathematical Models for the Coronavirus Disease (Covid-19) Pandemic." International Journal of Scientific and Research Publications (IJSRP) 10, no. 4 (April 24, 2020): p10082. http://dx.doi.org/10.29322/ijsrp.10.04.2020.p10082.
Texte intégralCOEN, P. G., P. T. HEATH, M. L. BARBOUR, and G. P. GARNETT. "Mathematical models of Haemophilus influenzae type b." Epidemiology and Infection 120, no. 3 (June 1998): 281–95. http://dx.doi.org/10.1017/s0950268898008784.
Texte intégralCurcio, Luciano, Laura D'Orsi, and Andrea De Gaetano. "Seven Mathematical Models of Hemorrhagic Shock." Computational and Mathematical Methods in Medicine 2021 (June 3, 2021): 1–34. http://dx.doi.org/10.1155/2021/6640638.
Texte intégralDike, Chinyere Ogochukwu, Zaitul Marlizawati Zainuddin, and Ikeme John Dike. "Mathematical Models for Mitigating Ebola Virus Disease Transmission: A Review." Advanced Science Letters 24, no. 5 (May 1, 2018): 3536–43. http://dx.doi.org/10.1166/asl.2018.11432.
Texte intégralFeinstein, A. R., C. K. Chan, J. M. Esdaile, R. I. Horwitz, M. J. McFarlane, and C. K. Wells. "Mathematical models and scientific reality in occurrence rates for disease." American Journal of Public Health 79, no. 9 (September 1989): 1303–4. http://dx.doi.org/10.2105/ajph.79.9.1303.
Texte intégralBlack, F. L., and B. Singer. "Elaboration Versus Simplification in Refining Mathematical Models of Infectious Disease." Annual Review of Microbiology 41, no. 1 (October 1987): 677–701. http://dx.doi.org/10.1146/annurev.mi.41.100187.003333.
Texte intégralGarnett, G. P. "An introduction to mathematical models in sexually transmitted disease epidemiology." Sexually Transmitted Infections 78, no. 1 (February 1, 2002): 7–12. http://dx.doi.org/10.1136/sti.78.1.7.
Texte intégralSarbaz, Yashar, and Hakimeh Pourakbari. "A review of presented mathematical models in Parkinson’s disease: black- and gray-box models." Medical & Biological Engineering & Computing 54, no. 6 (November 7, 2015): 855–68. http://dx.doi.org/10.1007/s11517-015-1401-9.
Texte intégralWeerasinghe, Hasitha N., Pamela M. Burrage, Kevin Burrage, and Dan V. Nicolau. "Mathematical Models of Cancer Cell Plasticity." Journal of Oncology 2019 (October 31, 2019): 1–14. http://dx.doi.org/10.1155/2019/2403483.
Texte intégralHughes, G. "Validating mathematical models of plant-disease progress in space and time." Mathematical Medicine and Biology 14, no. 2 (June 1, 1997): 85–112. http://dx.doi.org/10.1093/imammb/14.2.85.
Texte intégralFujiwara, Takeo. "Mathematical Analysis of Epidemic Disease Models and Application to COVID-19." Journal of the Physical Society of Japan 90, no. 2 (February 15, 2021): 023801. http://dx.doi.org/10.7566/jpsj.90.023801.
Texte intégralFlorea, Aurelia, and Cristian Lăzureanu. "A mathematical model of infectious disease transmission." ITM Web of Conferences 34 (2020): 02002. http://dx.doi.org/10.1051/itmconf/20203402002.
Texte intégralWeir, Mark H., Alexis L. Mraz, and Jade Mitchell. "An Advanced Risk Modeling Method to Estimate Legionellosis Risks Within a Diverse Population." Water 12, no. 1 (December 20, 2019): 43. http://dx.doi.org/10.3390/w12010043.
Texte intégralBravo de la Parra, R., M. Marvá, E. Sánchez, and L. Sanz. "Discrete Models of Disease and Competition." Discrete Dynamics in Nature and Society 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/5310837.
Texte intégralEl Khatib, N., O. Kafi, A. Sequeira, S. Simakov, Yu Vassilevski, and V. Volpert. "Mathematical modelling of atherosclerosis." Mathematical Modelling of Natural Phenomena 14, no. 6 (2019): 603. http://dx.doi.org/10.1051/mmnp/2019050.
Texte intégralYanchevskaya, E. Ya, and O. A. Mesnyankina. "Mathematical Modelling and Prediction in Infectious Disease Epidemiology." RUDN Journal of Medicine 23, no. 3 (December 15, 2019): 328–34. http://dx.doi.org/10.22363/2313-0245-2019-23-3-328-334.
Texte intégralLangemann, Dirk, Igor Nesteruk, and Jürgen Prestin. "Comparison of mathematical models for the dynamics of the Chernivtsi children disease." Mathematics and Computers in Simulation 123 (May 2016): 68–79. http://dx.doi.org/10.1016/j.matcom.2016.01.003.
Texte intégralRoberts, Paul A., Eamonn A. Gaffney, Philip J. Luthert, Alexander J. E. Foss, and Helen M. Byrne. "Mathematical and computational models of the retina in health, development and disease." Progress in Retinal and Eye Research 53 (July 2016): 48–69. http://dx.doi.org/10.1016/j.preteyeres.2016.04.001.
Texte intégralDurham, David P., and Elizabeth A. Casman. "Incorporating individual health-protective decisions into disease transmission models: a mathematical framework." Journal of The Royal Society Interface 9, no. 68 (July 20, 2011): 562–70. http://dx.doi.org/10.1098/rsif.2011.0325.
Texte intégralLiu, Yifan. "Mathematical models of vaccine inventory design for a breakout of epidemic disease." PAMM 7, no. 1 (December 2007): 2150013–14. http://dx.doi.org/10.1002/pamm.200700367.
Texte intégralNkeki, C. I., and G. O. S. Ekhaguere. "Some actuarial mathematical models for insuring the susceptibles of a communicable disease." International Journal of Financial Engineering 07, no. 02 (May 18, 2020): 2050014. http://dx.doi.org/10.1142/s2424786320500140.
Texte intégralFENTON, ANDY. "Editorial: Mathematical modelling of infectious diseases." Parasitology 143, no. 7 (March 30, 2016): 801–4. http://dx.doi.org/10.1017/s0031182016000214.
Texte intégralEl Khatib, N., S. Génieys, B. Kazmierczak, and V. Volpert. "Mathematical modelling of atherosclerosis as an inflammatory disease." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1908 (December 13, 2009): 4877–86. http://dx.doi.org/10.1098/rsta.2009.0142.
Texte intégralMichor, Franziska. "Mathematical Models of Cancer Evolution and Cure." Blood 126, no. 23 (December 3, 2015): SCI—54—SCI—54. http://dx.doi.org/10.1182/blood.v126.23.sci-54.sci-54.
Texte intégralGoncharova, Anastaciya B., Eugeny P. Kolpak, Madina M. Rasulova, and Alina V. Abramova. "Mathematical modeling of cancer treatment." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 16, no. 4 (2020): 437–46. http://dx.doi.org/10.21638/11701/spbu10.2020.408.
Texte intégralVAN HEST, N. A. H., C. J. P. A. HOEBE, J. W. DEN BOER, J. K. VERMUNT, E. P. F. IJZERMAN, W. G. BOERSMA, and J. H. RICHARDUS. "Incidence and completeness of notification of Legionnaires' disease in The Netherlands: covariate capture–recapture analysis acknowledging regional differences." Epidemiology and Infection 136, no. 4 (June 22, 2007): 540–50. http://dx.doi.org/10.1017/s0950268807008977.
Texte intégralChung, Chun Yen, Hung Yuan Chung, and Wen Tsai Sung. "Mathematical Models for the Dynamics Simulation of Tuberculosis." Applied Mechanics and Materials 418 (September 2013): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amm.418.265.
Texte intégralShain, Kenneth H. "Mathematical Models of Cancer Evolution and Cure." Blood 126, no. 23 (December 3, 2015): SCI—55—SCI—55. http://dx.doi.org/10.1182/blood.v126.23.sci-55.sci-55.
Texte intégralBrownell, A. L., B. G. Jenkins, and O. Isacson. "Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson's disease." Biomedicine & Pharmacotherapy 53, no. 3 (April 1999): 131–40. http://dx.doi.org/10.1016/s0753-3322(99)80078-x.
Texte intégralChowell, G. "Mathematical models to elucidate the transmission dynamics and control of vector-borne disease." International Journal of Infectious Diseases 53 (December 2016): 6–7. http://dx.doi.org/10.1016/j.ijid.2016.11.020.
Texte intégralJäger, Jens, Sebastian Marwitz, Jana Tiefenau, Janine Rasch, Olga Shevchuk, Christian Kugler, Torsten Goldmann, and Michael Steinert. "Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections." Infection and Immunity 82, no. 1 (October 28, 2013): 275–85. http://dx.doi.org/10.1128/iai.00703-13.
Texte intégralTchuenche, Jean M. "Patient-dependent effects in disease control: a mathematical model." ANZIAM Journal 48, no. 4 (April 2007): 583–96. http://dx.doi.org/10.1017/s1446181100003230.
Texte intégralRodriguez-Brenes, Ignacio A., and Dominik Wodarz. "Preventing clonal evolutionary processes in cancer: Insights from mathematical models." Proceedings of the National Academy of Sciences 112, no. 29 (July 21, 2015): 8843–50. http://dx.doi.org/10.1073/pnas.1501730112.
Texte intégralIshtiaq, Amna. "Dynamics of COVID-19 Transmission: Compartmental-based Mathematical Modeling." Life and Science 1, supplement (December 23, 2020): 5. http://dx.doi.org/10.37185/lns.1.1.134.
Texte intégralFORYS, URSULA. "INTERLEUKIN MATHEMATICAL MODEL OF AN IMMUNE SYSTEM." Journal of Biological Systems 03, no. 03 (September 1995): 889–902. http://dx.doi.org/10.1142/s0218339095000794.
Texte intégralChristen, Paula, and Lesong Conteh. "How are mathematical models and results from mathematical models of vaccine-preventable diseases used, or not, by global health organisations?" BMJ Global Health 6, no. 9 (September 2021): e006827. http://dx.doi.org/10.1136/bmjgh-2021-006827.
Texte intégralBowong, S., A. Temgoua, Y. Malong, and J. Mbang. "Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages." International Journal of Nonlinear Sciences and Numerical Simulation 21, no. 3-4 (May 26, 2020): 259–74. http://dx.doi.org/10.1515/ijnsns-2017-0244.
Texte intégralДерпак, V. Derpak, Полухин, V. Polukhin, Еськов, Valeriy Eskov, Пашнин, and A. Pashnin. "Mathematical modeling of involuntary movements in health and disease." Complexity. Mind. Postnonclassic 4, no. 2 (September 25, 2015): 75–86. http://dx.doi.org/10.12737/12002.
Texte intégralChowdhury, Debashish, and Dietrich Stauffer. "Systematics of the models of immune response and autoimmune disease." Journal of Statistical Physics 59, no. 3-4 (May 1990): 1019–42. http://dx.doi.org/10.1007/bf01025860.
Texte intégralMiller, Joel C. "Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes." Infectious Disease Modelling 2, no. 1 (February 2017): 35–55. http://dx.doi.org/10.1016/j.idm.2016.12.003.
Texte intégral