Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Li? transport.

Articles de revues sur le sujet « Li? transport »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Li? transport ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Dunham, Philip B., Scott J. Kelley, Paul J. Logue, Michael J. Mutolo, and Mark A. Milanick. "Na+-inhibitory sites of the Na+/H+ exchanger are Li+ substrate sites." American Journal of Physiology-Cell Physiology 289, no. 2 (2005): C277—C282. http://dx.doi.org/10.1152/ajpcell.00550.2004.

Texte intégral
Résumé :
Amiloride-inhibitable Li+ influx in dog red blood cells is mediated by the Na+/H+ exchanger, NHE. However, there are substantial differences between the properties of Li+ transport and Na+ transport through the NHE. Li+ influx is activated by cell shrinkage, and Na+ influx is not, as we reported previously (Dunham PB, Kelley SJ, and Logue PJ. Am J Physiol Cell Physiol 287: C336–C344, 2004). Li+ influx is a sigmoidal function of its concentration, and Na+ activation is linear at low Na+ concentrations. Li+ does not inhibit its own influx; in contrast, Na+ inhibits Na+ influx. Li+ prevents this
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lorger, Simon, Kai Narita, Robert Usiskin, and Joachim Maier. "Enhanced ion transport in Li2O and Li2S films." Chemical Communications 57, no. 53 (2021): 6503–6. http://dx.doi.org/10.1039/d1cc00557j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marcinek, M., J. Syzdek, M. Marczewski, et al. "Electrolytes for Li-ion transport – Review." Solid State Ionics 276 (August 2015): 107–26. http://dx.doi.org/10.1016/j.ssi.2015.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Takano, Yoshihiko, Hiroyuki Taketomi, Haruto Tsurumi, Tokio Yamadaya, and Nobuo Môri. "Transport properties of Li intercalated KCa2Nb3O10." Physica B: Condensed Matter 237-238 (July 1997): 68–70. http://dx.doi.org/10.1016/s0921-4526(97)00052-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Reddy, P. Venugopal. "Charge transport in Li‐Ni ferrospinels." Journal of Applied Physics 63, no. 8 (1988): 3783–85. http://dx.doi.org/10.1063/1.340639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Inokuma, Seiichi, Reiko Katoh, Takamasa Yamamoto, and Jun Nishimura. "Li+Ion Selective Transport by Crownophanes." Chemistry Letters 20, no. 10 (1991): 1751–54. http://dx.doi.org/10.1246/cl.1991.1751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Orlova, O. V., V. N. Oslopov, and S. A. Sidullina. "Influence of triphenyltetradecylphosphonium bromide on the Na+-Li+- countertransport rate in the erythrocyte membrane in patients with genetically different permeability of cell membranes to sodium." Kazan medical journal 93, no. 5 (2012): 789–91. http://dx.doi.org/10.17816/kmj1711.

Texte intégral
Résumé :
Aim. To study the influence of triphenyltetradecylphosphonium bromide [(PPh)3P+C14H29] Br- on the cell membranes permeability to Na+ by determining the rate of Na+-Li+-counter transport in erythrocyte membrane depending on it’s variable initial condition. Methods. Blood samples of 10 healthy volunteers with different Na+-Li+-counter transport rate distribution in erythrocyte membrane were analyzed: I quartile (5 subjects) - low permeability, III quartile (5 subjects) - moderately high permeability. Results. Na+-Li+-counter transport rate change in erythrocyte membrane under the influence of tr
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shigenobu, Keisuke, Kaoru Dokko, Masayoshi Watanabe, and Kazuhide Ueno. "Factors Affecting Li+ Transport Properties of Molten Li Salt Solvate Electrolytes." ECS Meeting Abstracts MA2020-02, no. 59 (2020): 2948. http://dx.doi.org/10.1149/ma2020-02592948mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Leyssac, P. P., O. Frederiksen, N. H. Holstein-Rathlou, A. C. Alfrey, and P. Christensen. "Active lithium transport by rat renal proximal tubule: a micropuncture study." American Journal of Physiology-Renal Physiology 267, no. 1 (1994): F86—F93. http://dx.doi.org/10.1152/ajprenal.1994.267.1.f86.

Texte intégral
Résumé :
We tested the hypothesis that proximal tubular Li+ reabsorption is due to passive transport. Clearances of [14C]inulin (CIn) and Li+ (CLi), proximal transepithelial electrical potential difference (PD), and tubular fluid-to-plasma Li+ concentration ratios [(TF/P)Li] were measured in anesthetized rats before and after induction of osmotic mannitol diuresis. Late proximal (TF/P)Li was measured after acute intravenous LiCl administration and after addition of LiCl to the diet for 2 days. Glomerular filtration rate (CIn) decreased, whereas CNa and CLi increased during osmotic diuresis. Control ear
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sarrao, J. L. "Structural, Magnetic and Transport Properties of Li-Doped La2CuO4." International Journal of Modern Physics B 12, no. 29n31 (1998): 3224–27. http://dx.doi.org/10.1142/s0217979298002362.

Texte intégral
Résumé :
We review recent work on La2Cu 1-x Li x O 4 for 0 < x < 0.5. Li substitutes for Cu in La2CuO4 , resulting in both the addition of a hole and the loss of a spin (because Li is monovalent and S = 0 while Cu is divalent and S = 1/2). Qualitatively, Li substitution has the same effect as the combined substitution of Sr and Zn. We explore the extent to which this analogy can be made quantitative and discuss how these results influence our understanding of the doped hole state in La2CuO4 .
Styles APA, Harvard, Vancouver, ISO, etc.
11

FEDUZI, R., F. LANZA, and V. DALLACASA. "TRANSPORT PROPERTIES OF LixCu(1 − x)O." Modern Physics Letters B 07, no. 03 (1993): 163–69. http://dx.doi.org/10.1142/s0217984993000187.

Texte intégral
Résumé :
The resistivity of Li doped CuO polycrystalline samples is discussed following the variable-range hopping mechanism (VRH) form, exp ((T0/T)1/4), between 80 and 300 K. The T0 have been measured to be in the range of 107 − 108 K . In the CuO undoped system, the VRH mechanism does not fit appreciably the resistivity data in the range of temperature considered. However, when Li is introduced, this behaviour is followed, leading us to suggest that the Li doped CuO could be view as a disordered system. At higher temperatures, the thermal activation mechanism takes place.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Joos, Markus, Christian Schneider, Andreas Münchinger, et al. "Impact of hydration on ion transport in Li2Sn2S5·xH2O." Journal of Materials Chemistry A 9, no. 30 (2021): 16532–44. http://dx.doi.org/10.1039/d1ta04736a.

Texte intégral
Résumé :
The layered material Li<sub>2</sub>Sn<sub>2</sub>S<sub>5</sub> forms two hydrated solid phases under increasing humidity. Intercalated water hydrates the interlayer Li<sup>+</sup> ions and screens coulombic interactions, leading to a high in-plane mobility of both Li<sup>+</sup> and H<sub>2</sub>O.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zagorski, Jakub, Juan Miguel López del Amo, Frédéric Aguesse, and Anna Llordés. "A Multiscale View on Li+ Transport in Li Metal Solid-State-Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 418. http://dx.doi.org/10.1149/ma2020-012418mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lozeille, Jérôme, Ervina Winata, Pavel Soldán, Edmond P. F. Lee, Larry A. Viehland, and Timothy G. Wright. "Spectroscopy of Li+·Rg and Li+–Rg transport coefficients (Rg = He–Rn)." Physical Chemistry Chemical Physics 4, no. 15 (2002): 3601–10. http://dx.doi.org/10.1039/b111675d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Yang, Liting, Xiangzhen Zhu, Xiaohui Li, et al. "Conductive Copper Niobate: Superior Li + ‐Storage Capability and Novel Li + ‐Transport Mechanism." Advanced Energy Materials 9, no. 39 (2019): 1902174. http://dx.doi.org/10.1002/aenm.201902174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Mathayan, Vairavel, Marcos V. Moro, Kenji Morita, et al. "In-operando observation of Li depth distribution and Li transport in thin film Li ion batteries." Applied Physics Letters 117, no. 2 (2020): 023902. http://dx.doi.org/10.1063/5.0014761.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Dawson, James Alexander. "Enhanced Li-Ion Transport in Nanosized Li10GeP2S12." ECS Meeting Abstracts MA2020-02, no. 5 (2020): 871. http://dx.doi.org/10.1149/ma2020-025871mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bhagavantha Reddy, M., V. N. Mulay, V. Devender Reddy, and P. Venugopal Reddy. "Charge transport in mixed LiTi ferrites." Materials Science and Engineering: B 14, no. 1 (1992): 63–69. http://dx.doi.org/10.1016/0921-5107(92)90330-c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Michaud, Georges, and C. R. Proffitt. "Particle Transport Processes." International Astronomical Union Colloquium 137 (1993): 246–59. http://dx.doi.org/10.1017/s025292110001784x.

Texte intégral
Résumé :
AbstractThe effect of gravitational settling and radiation driven diffusion on the evolution of stars near the main sequence is reviewed. New simplified formulae for calculating diffusion are proposed that improve on previous such formulae. The reliability of available diffusion coefficients is discussed and areas where further work is needed are identified. Newly available opacity calculations are used to estimate the effects of radiative acceleration on Fe.The size of the modifications to the evolution are shown to be modest: a reduction of order 10% on the evolutionary age of globular clust
Styles APA, Harvard, Vancouver, ISO, etc.
20

Post, M. A., and D. C. Dawson. "Basolateral Na(+)-H+ antiporter. Mechanisms of electroneutral and conductive ion transport." Journal of General Physiology 103, no. 5 (1994): 895–916. http://dx.doi.org/10.1085/jgp.103.5.895.

Texte intégral
Résumé :
The basolateral Na-H antiporter of the turtle colon exhibits both conductive and electroneutral Na+ transport (Post and Dawson. 1992. American Journal of Physiology. 262:C1089-C1094). To explore the mechanism of antiporter-mediated current flow, we compared the conditions necessary to evoke conduction and exchange, and determined the kinetics of activation for both processes. Outward (cell to extracellular fluid) but not inward (extracellular fluid to cell) Na+ or Li+ gradients promoted antiporter-mediated Na+ or Li+ currents, whereas an outwardly directed proton gradient drove inward Na+ or L
Styles APA, Harvard, Vancouver, ISO, etc.
21

MILEWSKA, ANNA, and JANINA MOLENDA. "MODIFICATION OF STRUCTURAL AND TRANSPORT PROPERTIES OF LAYERED LixNi1-y-zCoyMnzO2 CATHODE MATERIALS." Functional Materials Letters 04, no. 02 (2011): 113–16. http://dx.doi.org/10.1142/s1793604711001786.

Texte intégral
Résumé :
Structural and transport properties of pristine Li x Ni 1-y-z Co y Mn z O 2 (y = 0.25, 0.35, 0.5, 0.6; z = 0.1, 0.2) and LiNi 0.63 Cu 0.02 Co 0.25 Mn 0.1 O 2 materials are presented. Among LiNi 1-y-z Co y Mn z O 2 pristine oxides, LiNi 0.65 Co 0.25 Mn 0.1 O 2 presents the best transport properties. Strong decrease of electrical conductivity of Li x Ni 0.65 Co 0.25 Mn 0.1 O 2 and Li x Ni 0.55 Co 0.35 Mn 0.1 O 2 compositions upon lithium deintercalation was observed. Cu doping in LiNi 0.63 Cu 0.02 Co 0.25 Mn 0.1 O 2 improves the transport properties during deintercalation process. Li x Ni 0.65 C
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zulueta, Yohandys A., and Minh Tho Nguyen. "Enhanced Li-ion transport in divalent metal-doped Li2SnO3." Dalton Transactions 50, no. 8 (2021): 3020–26. http://dx.doi.org/10.1039/d0dt03860a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Liu, Wen, Yingying Mi, Zhe Weng, Yiren Zhong, Zishan Wu, and Hailiang Wang. "Functional metal–organic framework boosting lithium metal anode performance via chemical interactions." Chemical Science 8, no. 6 (2017): 4285–91. http://dx.doi.org/10.1039/c7sc00668c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Orlova, O. V., V. N. Oslopov, and S. A. Sidullina. "Effects of triphenyltetradecylphosphonium bromide and tributylhexadecylphosphonium bromide on cellular permeability in patients with hereditary cellular membrane hyperpermeability." Kazan medical journal 95, no. 1 (2014): 59–62. http://dx.doi.org/10.17816/kmj1457.

Texte intégral
Résumé :
Aim. Comparative analysis of effects of novel biologically active agents: triphenyltetradecylphosphonium bromide and tributylhexadecylphosphonium bromide on cell membrane permeability for sodium by determination of of Na +-Li +-countertransport speed in erythrocyte membrane at patients with genetically determined high membrane permeability for sodium. Methods. Blood samples of 8 healthy volunteers who were classified as persons belonging to IV population quartile according to Na +-Li +-counter-transport speed in erythrocyte membrane, i.e. persons with high membrane permeability, were studied.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Koudriachova, Marina V. "Enhanced Li-Transport on the Nanoscale: TiO2-B Nanowires." Journal of Nano Research 11 (May 2010): 159–64. http://dx.doi.org/10.4028/www.scientific.net/jnanor.11.159.

Texte intégral
Résumé :
The origin of enhanced intercalation of Li-ions into TiO2-B is being examined using first principles density functional calculations. Using advanced simulation techniques, we built a comprehensive description of Li-intercalation into TiO2-B and demonstrate that it acts as a capacitor at [Li]/[Ti] ≤ 0.5, while at higher concentrations the insertion capacity is limited by Li self-diffusion.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gittleson, Forrest S., Donald K. Ward, Reese E. Jones, Ryan A. Zarkesh, Tanvi Sheth, and Michael E. Foster. "Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids." Physical Chemistry Chemical Physics 21, no. 31 (2019): 17176–89. http://dx.doi.org/10.1039/c9cp02355k.

Texte intégral
Résumé :
Using experiments and molecular simulations, we evaluate pyrrolidinium-based ionic liquid Li electrolytes and find that Li<sup>+</sup> and O<sub>2</sub> transport can be enhanced by varying the pyrrolidinium structure and Li concentration.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Deng, Jinxiang, Ying Wang, Siji Qu, et al. "Fast Li + Transport of Li−Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode." Batteries & Supercaps 4, no. 1 (2020): 140–45. http://dx.doi.org/10.1002/batt.202000125.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Layden, Brian T., Abde M. Abukhdeir, Nicole Williams, et al. "Effects of Li+ transport and Li+ immobilization on Li+/Mg2+ competition in cells: implications for bipolar disorder." Biochemical Pharmacology 66, no. 10 (2003): 1915–24. http://dx.doi.org/10.1016/j.bcp.2003.07.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Rüther, Thomas, Mitsuhiro Kanakubo, Adam S. Best, and Kenneth R. Harris. "The importance of transport property studies for battery electrolytes: revisiting the transport properties of lithium–N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide mixtures." Physical Chemistry Chemical Physics 19, no. 16 (2017): 10527–42. http://dx.doi.org/10.1039/c7cp01272a.

Texte intégral
Résumé :
All three ion–ion interactions contribute to transport properties in {Li[FSI]–[Pyr<sub>13</sub>][FSI]} mixtures. Tracer diffusion coefficients of LI<sup>+</sup> in [Pyr<sub>13</sub>][FSI] are predicted.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Liang, Hong-Qing, Yi Guo, Xinsheng Peng, and Banglin Chen. "Light-gated cation-selective transport in metal–organic framework membranes." Journal of Materials Chemistry A 8, no. 22 (2020): 11399–405. http://dx.doi.org/10.1039/d0ta02895a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Andriyevsky, Bohdan, Klaus Doll, and Timo Jacob. "Electronic and transport properties of LiCoO2." Phys. Chem. Chem. Phys. 16, no. 42 (2014): 23412–20. http://dx.doi.org/10.1039/c4cp03052d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cahalan, R. C., E. D. Kelly, and W. D. Carlson. "Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs." American Mineralogist 99, no. 8-9 (2014): 1676–82. http://dx.doi.org/10.2138/am.2014.4676.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Harris, Stephen J., Adam Timmons, Daniel R. Baker, and Charles Monroe. "Direct in situ measurements of Li transport in Li-ion battery negative electrodes." Chemical Physics Letters 485, no. 4-6 (2010): 265–74. http://dx.doi.org/10.1016/j.cplett.2009.12.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Terada, Shoshi, Kohei Ikeda, Kazuhide Ueno, Kaoru Dokko, and Masayoshi Watanabe. "Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries." Australian Journal of Chemistry 72, no. 2 (2019): 70. http://dx.doi.org/10.1071/ch18270.

Texte intégral
Résumé :
The liquid structures and transport properties of electrolytes composed of lithium bis(fluorosulfonyl)amide (Li[FSA]) and glyme (triglyme (G3) or tetraglyme (G4)) were investigated. Raman spectroscopy indicated that the 1:1 mixtures of Li[FSA] and glyme (G3 or G4) are solvate ionic liquids (SILs) comprising a cationic [Li(glyme)]+ complex and the [FSA]− anion. In Li[FSA]-excess liquids with Li[FSA]/glyme molar ratios greater than 1, anionic Lix[FSA]y(y–x)– complexes were formed in addition to the cationic [Li(glyme)]+ complex. Pulsed field gradient NMR measurements revealed that the self-diffu
Styles APA, Harvard, Vancouver, ISO, etc.
35

Pahuja, Akshu, and Sunita Srivastava. "Electronic Transport Properties of Doped C28 Fullerene." Physics Research International 2014 (November 26, 2014): 1–7. http://dx.doi.org/10.1155/2014/872381.

Texte intégral
Résumé :
Endohedral doping of small fullerenes like C28 affects their electronic structure and increases their stability. The transport properties of Li@C28 sandwiched between two gold surfaces have been calculated using first-principles density functional theory and nonequilibrium Green’s function formalism. The transmission curves, IV characteristics, and molecular projected self-consistent Hamiltonian eigenstates of both pristine and doped molecule are computed. The current across the junction is found to decrease upon Li encapsulation, which can be attributed to change in alignment of molecular ene
Styles APA, Harvard, Vancouver, ISO, etc.
36

Stewart, Andrew K., Boris E. Shmukler, David H. Vandorpe, et al. "Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S." American Journal of Physiology-Cell Physiology 301, no. 6 (2011): C1325—C1343. http://dx.doi.org/10.1152/ajpcell.00054.2011.

Texte intégral
Résumé :
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+and86Rb+, with secondarily increased86Rb+influx sensitive to ouabain and to bumetanide. Increased RhAG-associated14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kazakevičius, Edvardas, Algimantas Kežionis, Tomas Šalkus, et al. "Some aspects of charge transport in Li0.5-xNaxLa0.5TiO3 (x = 0, 0.25) ceramics." Functional Materials Letters 08, no. 06 (2015): 1550076. http://dx.doi.org/10.1142/s1793604715500769.

Texte intégral
Résumé :
In this work, the influence of partial substitution of Li to Na in Li 0.5 La 0.5 TiO 3 (LLTO) compound was investigated by broad frequency range impedance spectroscopy (IS). The equivalent circuit method was used to relate the electric modulus spectra with confinement of mobile Li ions by rigidly arranged Na in the lattice of LLTO.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Latz, A., and J. Zausch. "Thermodynamic consistent transport theory of Li-ion batteries." Journal of Power Sources 196, no. 6 (2011): 3296–302. http://dx.doi.org/10.1016/j.jpowsour.2010.11.088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Li, Renwen, Zhe Qu, Lei Zhang, Langsheng Ling, Wei Tong, and Yuheng Zhang. "Structure, magnetic and transport properties of Li-doped." Solid State Communications 150, no. 47-48 (2010): 2289–93. http://dx.doi.org/10.1016/j.ssc.2010.10.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hussain, Fiaz, Pai Li, and Zhenyu Li. "Theoretical Insights into Li-Ion Transport in LiTa2PO8." Journal of Physical Chemistry C 123, no. 32 (2019): 19282–87. http://dx.doi.org/10.1021/acs.jpcc.9b03313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Son, Y., H. J. Park, J. S. Choi, and Y. Lee. "Li Ion Transport of Conducting Polymer Composite Electrodes." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 349, no. 1 (2000): 343–46. http://dx.doi.org/10.1080/10587250008024934.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Arun, N., S. Vasudevan, and K. V. Ramanathan. "Li ion transport in an intercalated polymer electrolyte." Journal of Chemical Physics 119, no. 5 (2003): 2840–48. http://dx.doi.org/10.1063/1.1587694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Grice, Stephen T., Peter W. Harland, and Robert G. A. R. Maclagan. "Cross sections and transport numbers of Li+–CO." Journal of Chemical Physics 99, no. 10 (1993): 7631–37. http://dx.doi.org/10.1063/1.465693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kong, Lushi, Xuewei Fu, Xin Fan, et al. "A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium–sulfur batteries." Nanoscale 11, no. 39 (2019): 18090–98. http://dx.doi.org/10.1039/c9nr04854e.

Texte intégral
Résumé :
The conductive CNF side of the Janus CNF@PI separator used in Li–S battery can effectively trap and convert polysulfides and the insulated PI nanofabric side separates the electrodes and facilitates Li<sup>+</sup>-transport in Li–S battery.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mabuchi, Takuya, Koki Nakajima, and Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries." Micromachines 12, no. 9 (2021): 1012. http://dx.doi.org/10.3390/mi12091012.

Texte intégral
Résumé :
Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at
Styles APA, Harvard, Vancouver, ISO, etc.
46

Wu, Musheng, Bo Xu, Xueling Lei, Kelvin Huang, and Chuying Ouyang. "Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations." Journal of Materials Chemistry A 6, no. 3 (2018): 1150–60. http://dx.doi.org/10.1039/c7ta08780b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Yu, Yang, Fei Lu, Na Sun, Aoli Wu, Wei Pan, and Liqiang Zheng. "Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries." Soft Matter 14, no. 30 (2018): 6313–19. http://dx.doi.org/10.1039/c8sm00907d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Wu, J., J. Nan, C. W. Nan, Y. Deng, Y. Lin, and S. Zhao. "Preparation and Transport Properties of Li-Doped NiO and (Li + Ca)-Doped NiO Oxides." physica status solidi (a) 193, no. 1 (2002): 78–85. http://dx.doi.org/10.1002/1521-396x(200209)193:1<78::aid-pssa78>3.0.co;2-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hui, Zeyu, Karthik S. Mayilvahanan, Yuan Yang, and Alan C. West. "Determining the Length Scale of Transport Impedances in Li-Ion Electrodes: Li(Ni0.33Mn0.33Co0.33)O2." Journal of The Electrochemical Society 167, no. 10 (2020): 100542. http://dx.doi.org/10.1149/1945-7111/ab9cce.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Elmariah, Sammy, and Robert B. Gunn. "Kinetic evidence that the Na-PO4 cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells." American Journal of Physiology-Cell Physiology 285, no. 2 (2003): C446—C456. http://dx.doi.org/10.1152/ajpcell.00606.2002.

Texte intégral
Résumé :
The molecular basis for Na/Li exchange is unknown. Li can be transported by the Na pump, anion exchanger (AE1), a background leak, and the Na/Li exchanger. In vivo the intraerythrocyte concentration of Li results from the balance of passive entry, mostly on AE1, and the active extrusion on the Na/Li exchanger. Here we show that erythrocytes have Li-activated PO4 transport that behaves as if it is mediated by the Na-PO4 cotransporter (hBNP1) and provide evidence that this Na/Li-PO4 cotransporter is also the mechanism for Na/Li exchange. First, external Li (&gt;20 mM) activated PO4 influx severa
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!