Articles de revues sur le sujet « Li? transport »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Li? transport ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Dunham, Philip B., Scott J. Kelley, Paul J. Logue, Michael J. Mutolo, and Mark A. Milanick. "Na+-inhibitory sites of the Na+/H+ exchanger are Li+ substrate sites." American Journal of Physiology-Cell Physiology 289, no. 2 (2005): C277—C282. http://dx.doi.org/10.1152/ajpcell.00550.2004.
Texte intégralLorger, Simon, Kai Narita, Robert Usiskin, and Joachim Maier. "Enhanced ion transport in Li2O and Li2S films." Chemical Communications 57, no. 53 (2021): 6503–6. http://dx.doi.org/10.1039/d1cc00557j.
Texte intégralMarcinek, M., J. Syzdek, M. Marczewski, et al. "Electrolytes for Li-ion transport – Review." Solid State Ionics 276 (August 2015): 107–26. http://dx.doi.org/10.1016/j.ssi.2015.02.006.
Texte intégralTakano, Yoshihiko, Hiroyuki Taketomi, Haruto Tsurumi, Tokio Yamadaya, and Nobuo Môri. "Transport properties of Li intercalated KCa2Nb3O10." Physica B: Condensed Matter 237-238 (July 1997): 68–70. http://dx.doi.org/10.1016/s0921-4526(97)00052-5.
Texte intégralReddy, P. Venugopal. "Charge transport in Li‐Ni ferrospinels." Journal of Applied Physics 63, no. 8 (1988): 3783–85. http://dx.doi.org/10.1063/1.340639.
Texte intégralInokuma, Seiichi, Reiko Katoh, Takamasa Yamamoto, and Jun Nishimura. "Li+Ion Selective Transport by Crownophanes." Chemistry Letters 20, no. 10 (1991): 1751–54. http://dx.doi.org/10.1246/cl.1991.1751.
Texte intégralOrlova, O. V., V. N. Oslopov, and S. A. Sidullina. "Influence of triphenyltetradecylphosphonium bromide on the Na+-Li+- countertransport rate in the erythrocyte membrane in patients with genetically different permeability of cell membranes to sodium." Kazan medical journal 93, no. 5 (2012): 789–91. http://dx.doi.org/10.17816/kmj1711.
Texte intégralShigenobu, Keisuke, Kaoru Dokko, Masayoshi Watanabe, and Kazuhide Ueno. "Factors Affecting Li+ Transport Properties of Molten Li Salt Solvate Electrolytes." ECS Meeting Abstracts MA2020-02, no. 59 (2020): 2948. http://dx.doi.org/10.1149/ma2020-02592948mtgabs.
Texte intégralLeyssac, P. P., O. Frederiksen, N. H. Holstein-Rathlou, A. C. Alfrey, and P. Christensen. "Active lithium transport by rat renal proximal tubule: a micropuncture study." American Journal of Physiology-Renal Physiology 267, no. 1 (1994): F86—F93. http://dx.doi.org/10.1152/ajprenal.1994.267.1.f86.
Texte intégralSarrao, J. L. "Structural, Magnetic and Transport Properties of Li-Doped La2CuO4." International Journal of Modern Physics B 12, no. 29n31 (1998): 3224–27. http://dx.doi.org/10.1142/s0217979298002362.
Texte intégralFEDUZI, R., F. LANZA, and V. DALLACASA. "TRANSPORT PROPERTIES OF LixCu(1 − x)O." Modern Physics Letters B 07, no. 03 (1993): 163–69. http://dx.doi.org/10.1142/s0217984993000187.
Texte intégralJoos, Markus, Christian Schneider, Andreas Münchinger, et al. "Impact of hydration on ion transport in Li2Sn2S5·xH2O." Journal of Materials Chemistry A 9, no. 30 (2021): 16532–44. http://dx.doi.org/10.1039/d1ta04736a.
Texte intégralZagorski, Jakub, Juan Miguel López del Amo, Frédéric Aguesse, and Anna Llordés. "A Multiscale View on Li+ Transport in Li Metal Solid-State-Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 418. http://dx.doi.org/10.1149/ma2020-012418mtgabs.
Texte intégralLozeille, Jérôme, Ervina Winata, Pavel Soldán, Edmond P. F. Lee, Larry A. Viehland, and Timothy G. Wright. "Spectroscopy of Li+·Rg and Li+–Rg transport coefficients (Rg = He–Rn)." Physical Chemistry Chemical Physics 4, no. 15 (2002): 3601–10. http://dx.doi.org/10.1039/b111675d.
Texte intégralYang, Liting, Xiangzhen Zhu, Xiaohui Li, et al. "Conductive Copper Niobate: Superior Li + ‐Storage Capability and Novel Li + ‐Transport Mechanism." Advanced Energy Materials 9, no. 39 (2019): 1902174. http://dx.doi.org/10.1002/aenm.201902174.
Texte intégralMathayan, Vairavel, Marcos V. Moro, Kenji Morita, et al. "In-operando observation of Li depth distribution and Li transport in thin film Li ion batteries." Applied Physics Letters 117, no. 2 (2020): 023902. http://dx.doi.org/10.1063/5.0014761.
Texte intégralDawson, James Alexander. "Enhanced Li-Ion Transport in Nanosized Li10GeP2S12." ECS Meeting Abstracts MA2020-02, no. 5 (2020): 871. http://dx.doi.org/10.1149/ma2020-025871mtgabs.
Texte intégralBhagavantha Reddy, M., V. N. Mulay, V. Devender Reddy, and P. Venugopal Reddy. "Charge transport in mixed LiTi ferrites." Materials Science and Engineering: B 14, no. 1 (1992): 63–69. http://dx.doi.org/10.1016/0921-5107(92)90330-c.
Texte intégralMichaud, Georges, and C. R. Proffitt. "Particle Transport Processes." International Astronomical Union Colloquium 137 (1993): 246–59. http://dx.doi.org/10.1017/s025292110001784x.
Texte intégralPost, M. A., and D. C. Dawson. "Basolateral Na(+)-H+ antiporter. Mechanisms of electroneutral and conductive ion transport." Journal of General Physiology 103, no. 5 (1994): 895–916. http://dx.doi.org/10.1085/jgp.103.5.895.
Texte intégralMILEWSKA, ANNA, and JANINA MOLENDA. "MODIFICATION OF STRUCTURAL AND TRANSPORT PROPERTIES OF LAYERED LixNi1-y-zCoyMnzO2 CATHODE MATERIALS." Functional Materials Letters 04, no. 02 (2011): 113–16. http://dx.doi.org/10.1142/s1793604711001786.
Texte intégralZulueta, Yohandys A., and Minh Tho Nguyen. "Enhanced Li-ion transport in divalent metal-doped Li2SnO3." Dalton Transactions 50, no. 8 (2021): 3020–26. http://dx.doi.org/10.1039/d0dt03860a.
Texte intégralLiu, Wen, Yingying Mi, Zhe Weng, Yiren Zhong, Zishan Wu, and Hailiang Wang. "Functional metal–organic framework boosting lithium metal anode performance via chemical interactions." Chemical Science 8, no. 6 (2017): 4285–91. http://dx.doi.org/10.1039/c7sc00668c.
Texte intégralOrlova, O. V., V. N. Oslopov, and S. A. Sidullina. "Effects of triphenyltetradecylphosphonium bromide and tributylhexadecylphosphonium bromide on cellular permeability in patients with hereditary cellular membrane hyperpermeability." Kazan medical journal 95, no. 1 (2014): 59–62. http://dx.doi.org/10.17816/kmj1457.
Texte intégralKoudriachova, Marina V. "Enhanced Li-Transport on the Nanoscale: TiO2-B Nanowires." Journal of Nano Research 11 (May 2010): 159–64. http://dx.doi.org/10.4028/www.scientific.net/jnanor.11.159.
Texte intégralGittleson, Forrest S., Donald K. Ward, Reese E. Jones, Ryan A. Zarkesh, Tanvi Sheth, and Michael E. Foster. "Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids." Physical Chemistry Chemical Physics 21, no. 31 (2019): 17176–89. http://dx.doi.org/10.1039/c9cp02355k.
Texte intégralDeng, Jinxiang, Ying Wang, Siji Qu, et al. "Fast Li + Transport of Li−Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode." Batteries & Supercaps 4, no. 1 (2020): 140–45. http://dx.doi.org/10.1002/batt.202000125.
Texte intégralLayden, Brian T., Abde M. Abukhdeir, Nicole Williams, et al. "Effects of Li+ transport and Li+ immobilization on Li+/Mg2+ competition in cells: implications for bipolar disorder." Biochemical Pharmacology 66, no. 10 (2003): 1915–24. http://dx.doi.org/10.1016/j.bcp.2003.07.001.
Texte intégralRüther, Thomas, Mitsuhiro Kanakubo, Adam S. Best, and Kenneth R. Harris. "The importance of transport property studies for battery electrolytes: revisiting the transport properties of lithium–N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide mixtures." Physical Chemistry Chemical Physics 19, no. 16 (2017): 10527–42. http://dx.doi.org/10.1039/c7cp01272a.
Texte intégralLiang, Hong-Qing, Yi Guo, Xinsheng Peng, and Banglin Chen. "Light-gated cation-selective transport in metal–organic framework membranes." Journal of Materials Chemistry A 8, no. 22 (2020): 11399–405. http://dx.doi.org/10.1039/d0ta02895a.
Texte intégralAndriyevsky, Bohdan, Klaus Doll, and Timo Jacob. "Electronic and transport properties of LiCoO2." Phys. Chem. Chem. Phys. 16, no. 42 (2014): 23412–20. http://dx.doi.org/10.1039/c4cp03052d.
Texte intégralCahalan, R. C., E. D. Kelly, and W. D. Carlson. "Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs." American Mineralogist 99, no. 8-9 (2014): 1676–82. http://dx.doi.org/10.2138/am.2014.4676.
Texte intégralHarris, Stephen J., Adam Timmons, Daniel R. Baker, and Charles Monroe. "Direct in situ measurements of Li transport in Li-ion battery negative electrodes." Chemical Physics Letters 485, no. 4-6 (2010): 265–74. http://dx.doi.org/10.1016/j.cplett.2009.12.033.
Texte intégralTerada, Shoshi, Kohei Ikeda, Kazuhide Ueno, Kaoru Dokko, and Masayoshi Watanabe. "Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries." Australian Journal of Chemistry 72, no. 2 (2019): 70. http://dx.doi.org/10.1071/ch18270.
Texte intégralPahuja, Akshu, and Sunita Srivastava. "Electronic Transport Properties of Doped C28 Fullerene." Physics Research International 2014 (November 26, 2014): 1–7. http://dx.doi.org/10.1155/2014/872381.
Texte intégralStewart, Andrew K., Boris E. Shmukler, David H. Vandorpe, et al. "Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S." American Journal of Physiology-Cell Physiology 301, no. 6 (2011): C1325—C1343. http://dx.doi.org/10.1152/ajpcell.00054.2011.
Texte intégralKazakevičius, Edvardas, Algimantas Kežionis, Tomas Šalkus, et al. "Some aspects of charge transport in Li0.5-xNaxLa0.5TiO3 (x = 0, 0.25) ceramics." Functional Materials Letters 08, no. 06 (2015): 1550076. http://dx.doi.org/10.1142/s1793604715500769.
Texte intégralLatz, A., and J. Zausch. "Thermodynamic consistent transport theory of Li-ion batteries." Journal of Power Sources 196, no. 6 (2011): 3296–302. http://dx.doi.org/10.1016/j.jpowsour.2010.11.088.
Texte intégralLi, Renwen, Zhe Qu, Lei Zhang, Langsheng Ling, Wei Tong, and Yuheng Zhang. "Structure, magnetic and transport properties of Li-doped." Solid State Communications 150, no. 47-48 (2010): 2289–93. http://dx.doi.org/10.1016/j.ssc.2010.10.019.
Texte intégralHussain, Fiaz, Pai Li, and Zhenyu Li. "Theoretical Insights into Li-Ion Transport in LiTa2PO8." Journal of Physical Chemistry C 123, no. 32 (2019): 19282–87. http://dx.doi.org/10.1021/acs.jpcc.9b03313.
Texte intégralSon, Y., H. J. Park, J. S. Choi, and Y. Lee. "Li Ion Transport of Conducting Polymer Composite Electrodes." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 349, no. 1 (2000): 343–46. http://dx.doi.org/10.1080/10587250008024934.
Texte intégralArun, N., S. Vasudevan, and K. V. Ramanathan. "Li ion transport in an intercalated polymer electrolyte." Journal of Chemical Physics 119, no. 5 (2003): 2840–48. http://dx.doi.org/10.1063/1.1587694.
Texte intégralGrice, Stephen T., Peter W. Harland, and Robert G. A. R. Maclagan. "Cross sections and transport numbers of Li+–CO." Journal of Chemical Physics 99, no. 10 (1993): 7631–37. http://dx.doi.org/10.1063/1.465693.
Texte intégralKong, Lushi, Xuewei Fu, Xin Fan, et al. "A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium–sulfur batteries." Nanoscale 11, no. 39 (2019): 18090–98. http://dx.doi.org/10.1039/c9nr04854e.
Texte intégralMabuchi, Takuya, Koki Nakajima, and Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries." Micromachines 12, no. 9 (2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Texte intégralWu, Musheng, Bo Xu, Xueling Lei, Kelvin Huang, and Chuying Ouyang. "Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations." Journal of Materials Chemistry A 6, no. 3 (2018): 1150–60. http://dx.doi.org/10.1039/c7ta08780b.
Texte intégralYu, Yang, Fei Lu, Na Sun, Aoli Wu, Wei Pan, and Liqiang Zheng. "Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries." Soft Matter 14, no. 30 (2018): 6313–19. http://dx.doi.org/10.1039/c8sm00907d.
Texte intégralWu, J., J. Nan, C. W. Nan, Y. Deng, Y. Lin, and S. Zhao. "Preparation and Transport Properties of Li-Doped NiO and (Li + Ca)-Doped NiO Oxides." physica status solidi (a) 193, no. 1 (2002): 78–85. http://dx.doi.org/10.1002/1521-396x(200209)193:1<78::aid-pssa78>3.0.co;2-8.
Texte intégralHui, Zeyu, Karthik S. Mayilvahanan, Yuan Yang, and Alan C. West. "Determining the Length Scale of Transport Impedances in Li-Ion Electrodes: Li(Ni0.33Mn0.33Co0.33)O2." Journal of The Electrochemical Society 167, no. 10 (2020): 100542. http://dx.doi.org/10.1149/1945-7111/ab9cce.
Texte intégralElmariah, Sammy, and Robert B. Gunn. "Kinetic evidence that the Na-PO4 cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells." American Journal of Physiology-Cell Physiology 285, no. 2 (2003): C446—C456. http://dx.doi.org/10.1152/ajpcell.00606.2002.
Texte intégral