Littérature scientifique sur le sujet « Life sciences »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Life sciences ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Life sciences"
Smith, P. M. « Life Sciences' Stewardship of Science ». Science 286, no 5449 (24 décembre 1999) : 2448. http://dx.doi.org/10.1126/science.286.5449.2448.
Texte intégralLatimer, Joanna. « Science under siege ? Being alongside the life sciences, giving science life ». Sociological Review 67, no 2 (28 février 2019) : 264–86. http://dx.doi.org/10.1177/0038026119829752.
Texte intégralGiordano, Geoff. « Life Sciences ». Plastics Engineering 77, no 2 (février 2021) : 20–25. http://dx.doi.org/10.1002/peng.20447.
Texte intégralSchoenbeck, Harold. « Life sciences ». Realidad Empresarial, no 5 (30 avril 2018) : 4–18. http://dx.doi.org/10.5377/reuca.v0i5.6104.
Texte intégralRang, H. P. « Life Sciences ». British Journal of Pharmacology 153, S1 (mars 2008) : S1. http://dx.doi.org/10.1038/bjp.2008.31.
Texte intégralPrüll, Cay-Rüdiger. « Life Sciences ». Annals of Science 66, no 1 (janvier 2009) : 143–45. http://dx.doi.org/10.1080/00033790701594613.
Texte intégralBowler, Peter J. « Life Sciences ». Annals of Science 66, no 1 (janvier 2009) : 145–47. http://dx.doi.org/10.1080/00033790701652395.
Texte intégralTHAYER, ANN M. « LIFE SCIENCES ». Chemical & ; Engineering News 79, no 17 (23 avril 2001) : 25–36. http://dx.doi.org/10.1021/cen-v079n017.p025.
Texte intégralCooke, Philip. « Life Sciences Clusters and Regional Science Policy ». Urban Studies 41, no 5-6 (mai 2004) : 1113–31. http://dx.doi.org/10.1080/00420980410001675814.
Texte intégralPipiya, L., et V. Dorogokupets. « Science in Iran : nanotechnology and the life sciences ». Global Science Review / Nauka za rubežom 109, no 6 (26 juillet 2022) : 1–60. http://dx.doi.org/10.37437/2222517x-2022-109-6-1-60.
Texte intégralThèses sur le sujet "Life sciences"
Yu, Jian Qing. « Virtual learning environments and life sciences ». Thesis, Nottingham Trent University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442337.
Texte intégralDail, Mathias. « Clustering unstructured life sciences experiments with unsupervised machine learning : Natural language processing for unstructured life sciences texts ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265549.
Texte intégralSyftet med denna uppsats är att analysera olika typer av dokumentrepresentationer för att, på ett oövervakat sätt, förbättra sökbarheten hos ostrukturerade biomedicinska experiment genom att kluster-samla liknande experiment tillsammans. Arbetet innefattar att producera, analysera och jämföra textrepresenta- tioner med hjälp av olika traditionella och moderna maskininlärningsmetoder. Den data som analyserats är brusig och heterogen eftersom den kommer från manuellt skrivna experiment från ett elektroniskt labbokssystem. Att kluster-indela ostrukturerade och oannoterade experiment är en utmaning. Det kräver en representation av texten som enbart baseras på väsentlig information. I denna uppsats har statistiska och generativa tekniker som inbäddade ord samt de senaste framstegen inom djup maskininlärning inom området naturlig textbearbetning använts för att skapa olika textrepresentationer. Genom att kombinera olika tekniker samt att utnyttja externa biomedicinska kunskapskällor har möjligheten att skapa en bättre representation undersökts. Flera analyser har gjorts och dessa har kompletterats med en manuell utvärdering utförd av experter inom det biomedicinska kunskapsfältet. Resultatet visar att traditionella statistiska metoder kan skapa en rimlig basnivå. Moderna djupinlärningsalgoritmer har också visat sig fungera mycket väl och skapat rika representationer av innehållet. Kombinationer av flera tekniker samt användningen av externa biomedicinska kunskapskällor och ontologier har visat sig ge bäst resultat. De olika teknikerna verkar modellera olika och komplementära aspekter av en text, och att kombinera dem kan vara en nyckel till att signifikant förbättra sökbarheten hos ostrukturerad text.
Booi, Kwanele. « Life Sciences teacher educators’ perspectives of the principle of knowledge integration in the Life Sciences teacher education curriculum ». Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2629.
Texte intégralThis study aimed at examining the Life Sciences teacher educator’s perceptions and perspectives of knowledge integration in the espoused curriculum prescribed by the South African Department of Higher Education and Training through the policy of Minimum Requirements for Teacher Qualifications (MRTEQ). The qualitative research design was adopted for data collection procedures. The selection of the sampling was purposive, in the sense that the Higher Education Institutions (HEIs) who participated were classified into two categories. The first category consisted of three historical or traditional universities and the second category was formed by three higher education institutions that emerged after the merger of Teacher training Colleges, Technikons and universities. The study targeted lecturers, senior lecturers and professors in the field of Life Sciences Education who participated in the development of curriculum for Life Science teacher education and training. The interviews were conducted to elicit data on the experiences and perceptions that influenced the process of designing and developing the curriculum blue print which came out as a product to be adopted by the institution. The results of the empirical study were analysed by using qualitative procedures, which are; coding of data, classification of data into categories and the identification of themes and issues. The contesting views and perceptions were summarised in the results highlighted follows: The school Life Science curriculum requires teachers who are capable of integrating knowledge from various domains of scientific knowledge but the study demonstrates that the Life Science teacher educators who participated in the study had views and perceptions that are not congruent with those of the curriculum as it presently stands. This could imply that the Life Science teachers educated and trained for the school Life Science curriculum could experience problem with its implementation in classrooms. The twenty first century teacher could be expected to demonstrate competences such as; critical thinking, creative thinking, logic and independent thinkers. The study further concluded that there are academics in Science Education departments who still adhere doggedly to the traditional ways teaching their own disciplines. This study confirms the importance of breaking the artificial disciplinary boundaries to facilitate interdisciplinary knowledge construction. This study endorses the emerging trend of knowledge integration in Science Educations.Finally the study suggests that collaborative and collegial deliberations among Science teacher educators and experts in various knowledge domains could be a way of finding common ground on issues highlighted in the study.
Maherally, Uzma Nooreen. « Development and Validation of the Life Sciences Assessment : A Measure of Preschool Children's Conceptions of Basic Life Sciences ». University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1396533078.
Texte intégralRepchevskiy, Dmitry. « Ontology based data integration in life sciences ». Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/386411.
Texte intégralEl objetivo de la tesis es el desarrollo de una solución práctica y estándar para la integración semántica de los datos y servicios biológicos. La tesis estudia escenarios diferentes en los cuales las ontologías pueden beneficiar el desarrollo de los servicios web, su búsqueda y su visibilidad. A pesar de que las ontologías son ampliamente utilizadas en la biología, su uso habitualmente se limita a la definición de las jerarquías taxonómicas. La tesis examina la utilidad de las ontologías para la integración de los datos en el desarrollo de los servicios web semánticos. Las ontologías que definen los tipos de datos biológicos tienen un gran valor para la integración de los datos, especialmente ante un cambio continuo de los estándares. La tesis evalúa la ontología BioMoby para la generación de los servicios web conforme con las especificaciones WS-I y los servicios REST. Otro aspecto muy importante de la tesis es el uso de las ontologías para la descripción de los servicios web. La tesis evalúa la ontología WSDL promovida por el consorcio W3C para la descripción de los servicios y su búsqueda. Finalmente, se considera la integración con las plataformas modernas de la ejecución de los flujos de trabajo como Taverna y Galaxy. A pesar de la creciente popularidad del formato JSON, los servicios web dependen mucho del XML. La herramienta OWL2XS facilita el desarrollo de los servicios web semánticos generando un esquema XML a partir de una ontología OWL 2. La integración de los servicios web es difícil de conseguir sin una adaptación de los estándares. La aplicación BioNemus genera de manera automática servicios web estándar a partir de las ontologías BioMoby. La representación semántica de los servicios web simplifica su búsqueda y anotación. El Registro Semántico de Servicios Web (BioSWR) está basado en la ontología WSDL del W3C y proporciona una representación en distintos formatos: OWL 2, WSDL 1.1, WSDL 2.0 y WADL. Para demostrar los beneficios de la descripción semántica de los servicios web se ha desarrollado un plugin para Taverna. También se ha implementado una nueva librería experimental que ha sido usada en la aplicación Galaxy Gears, la cual permite la integración de los servicios web en Galaxy. La tesis explora el alcance de la aplicación de las ontologías para la integración de los datos y los servicios biológicos, proporcionando un amplio conjunto de nuevas aplicaciones.
Rajaram, Lakshminarayan. « Statistical models in environmental and life sciences ». [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001561.
Texte intégralLam, Hoe-chung. « Hong Kong Life Science Museum ». Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25956152.
Texte intégralBertthelon, Xavier. « Speckle imaging and image processingapplied to life sciences ». Thesis, KTH, Tillämpad fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161746.
Texte intégralChiu, Eugene 1979. « Characterizing MIT's serial scientist-entrepreneurs in life sciences ». Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35552.
Texte intégralIncludes bibliographical references (leaves 37-40).
Since the Bayh-Dole Act of 1980, the commercialization of ideas generated in academia has driven significant startup activity and expansion in the life sciences. This commercial transformation has been shown by others to be concentrated among a relatively small number of elite academic institutions. However, within these institutions, we find that a small number of prestigious scientists are disproportionately responsible for entrepreneurial and commercial activity. To date, limited research has been conducted which aims to understand the characteristics of such serial scientist-entrepreneurs or their significance in early commercial ventures. This study identifies and characterizes 18 serial scientist-entrepreneurs (defined as faculty who have founded or served on the board of directors of 3 or more startups) on the basis of academic impact, patenting, and social network centrality, as compared to their first-time entrepreneur (i.e., faculty who founded or directed 1-2 companies) and noncommercial peers. These individuals constitute a subset of 66 scientist-entrepreneurs from a population of the 493 scientists who served as faculty in life sciences-related departments at MIT, during the period of 1981 to 2005 (representing the primary commercialization period for biotechnology).
(cont.) The thesis highlights three key findings. First, the subset of 18 serial scientist-entrepreneurs founded or directed two-thirds of all startup ventures associated with the entire population thus underscoring the significant "skew" in commercial activities. Furthermore, empirical analyses revealed that these serial scientist-entrepreneurs had significantly higher academic impact (i.e., "academic prestige"), as measured by citations to their work, as compared to first-time entrepreneurs and noncommercial scientists. Perhaps not surprisingly, they also had significantly higher numbers of issued U.S. patents, compared to first-time entrepreneurs. Second, the serial scientist-entrepreneurs developed robust relationships with a small group of venture capital investors, who have repeatedly funded their companies. Several of these serial scientist-entrepreneurs retained central positions in the social network of faculty entrepreneurs, potentially brokering and accelerating entrepreneurial activity, including scientific advisory board membership, within the community. These findings suggest that serial scientist-entrepreneurs play a vital role in contributing reputation, deep technical insight, access to intellectual property, and relationship networks to startup life sciences ventures.
(cont.) It remains for additional research to determine whether the active involvement of serial scientist-entrepreneurs has resulted in enhanced startup value or performance.
by Eugene Chiu.
S.M.
Shrestha, Tej Bahadur. « Heterocycles for life-sciences applications and information storage ». Diss., Kansas State University, 2010. http://hdl.handle.net/2097/13540.
Texte intégralDepartment of Chemistry
Stefan H. Bossmann
The photochromic spirodihydroindolizine/betaine (DHI/B) system has been reinvestigated applying picosecond, microsecond, stationary absorption measurements, and NMR-kinetics. The first surprise was that the electronic structure of the betaines is quite different than commonly assumed. The photochemical ring-opening of DHIs to betaines is a conrotatory 1,5 electrocyclic reaction, as picosecond absorption spectroscopy confirms. The (disrotatory) thermal ring-closing occurs from the cisoid betaine. The lifetime of the transoid betaine is 60 s at 300 K, whereas the lifetime of the cisoid isomer is of the order of 250 microseconds. According to these results, the electrocyclic back reaction of the betaines to the DHI is NOT rate determining, as previously thought, but the cisoid-transoid-isomerization of the betaine. Although the presence of a second nitrogen atom increases the photostability of the spirodihydroindolizine-pyridazine/betaine-system remarkably, the photochemical reaction mechanism appears to be exactly the same for spirodihydroindolizine-pyridazine/betaine-system. A nondestructive photoswitch or an information recording systems has been explored using styryl-quinolyldihydroindolizines. Both isomers DHI and betaine are fluorescent. When the blue betaine is stabilized in a thin polymethyl methacrylate (PMMA) matrix, it is stable for several hours even in room temperature and very stable at 77K. Although irradiation of visible light = 532 nm allows the photo-induced reaction of the Betaine back to the DHI, a nondestructive read-out can be performed at λ = 645 nm upon excitation with λ = 580 nm. Image recording (write) and read-out, as well as information storage (at 77K) have been demonstrated. Charged and maleimide-functionalized DHI/B systems have beed synthesized for use as photochemical gates of the mycobacterial channel porin MspA. Positively charged and maleimide functionalized DHI groups that were attached to the DHI/B-system permit the binding of the photoswitch to selective positions in the channel proteins due to the presence of a cysteine moiety. An inexpensive new method for the large scale synthesis of coelenterazine is developed. A modified Negishi coupling reaction is used to make pyrazine intermediates from aminopyrazine as an economical starting material. This method permits the use of up to 1g coelenterazine per kg body weight and day, which turns the renilla transfected stem cells into powerful light sources.
Livres sur le sujet "Life sciences"
Gaudin, Thierry, Dominique Lacroix, Marie-Christine Maurel et Jean-Charles Pomerol, dir. Life Sciences, Information Sciences. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119452713.
Texte intégralDerek, Hall, dir. Life sciences. Redding, Conn : Brown Bear Books, 2010.
Trouver le texte intégralBahera, Basanta Kumara, Ram Prasad et Shyambhavee Behera. Life Sciences Industry. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2051-5.
Texte intégralR. Berthold, Michael, Robert C. Glen, Kay Diederichs, Oliver Kohlbacher et Ingrid Fischer, dir. Computational Life Sciences. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11560500.
Texte intégralHoffbauer, Barbara. Berufsziel Life Sciences. Heidelberg : Spektrum Akademischer Verlag, 2011. http://dx.doi.org/10.1007/978-3-8274-2877-6.
Texte intégralWells, Robert D., Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters et Ellis Bell, dir. Molecular Life Sciences. New York, NY : Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-6436-5.
Texte intégralShea, M. A., Rafael Navarro-González et Klaus B. Slenzka. Space life sciences. Amsterdam : Published for the Committee on Space Research [by] Elsevier, 2008.
Trouver le texte intégralL, Bruce L., Dournon C et COSPAR, dir. Space life sciences. Oxford : Elsevier, 2006.
Trouver le texte intégralUnited States. Office of Space Science and Applications. Life Sciences Division., dir. Life sciences accomplishments. Washington, D.C : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Trouver le texte intégralDörpinghaus, Jens, Vera Weil, Sebastian Schaaf et Alexander Apke, dir. Computational Life Sciences. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08411-9.
Texte intégralChapitres de livres sur le sujet "Life sciences"
Fuhr, Günter R. « Life Sciences ». Dans Mikrosystemtechnik, 35–51. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-08759-6_3.
Texte intégralGreenspan, Yvette F. « Life Sciences ». Dans A Guide to Teaching Elementary Science, 69–74. Rotterdam : SensePublishers, 2016. http://dx.doi.org/10.1007/978-94-6300-367-4_12.
Texte intégralWiegleb, Gerhard. « Life Sciences ». Dans Gas Measurement Technology in Theory and Practice, 1085–168. Wiesbaden : Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-37232-3_16.
Texte intégralAtmanspacher, Harald. « LIFE SCIENCES ». Dans Reproducibility : Principles, Problems, Practices, and Prospects, 287–90. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118865064.part4.
Texte intégralWestphal, Laurie E. « Life Sciences ». Dans Differentiating Instruction With Menus for the Inclusive Classroom Grades 68, 97–118. New York : Routledge, 2021. http://dx.doi.org/10.4324/9781003234289-7.
Texte intégralWestphal, Laurie E. « Life Sciences ». Dans Science Dictionary for kids, 19–35. New York : Routledge, 2021. http://dx.doi.org/10.4324/9781003237877-5.
Texte intégralten Have, Henk, et Maria do Céu Patrão Neves. « Life Sciences ». Dans Dictionary of Global Bioethics, 677. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54161-3_332.
Texte intégralRaugel, Pierre-Jean. « QA Life Sciences ». Dans Rapid Food Analysis and Hygiene Monitoring, 486–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58362-9_37.
Texte intégralJäger, Sandro, Michael Trübestein et Matthias Daniel Aepli. « Life Sciences Overview ». Dans Investments in Life Science Real Estate, 7–19. Wiesbaden : Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-43055-9_2.
Texte intégralBarkai, David. « Computational Life Sciences ». Dans Unmatched, 171–77. Boca Raton : Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003038054-21.
Texte intégralActes de conférences sur le sujet "Life sciences"
Schneckenburger, H. « Adapting laser microscopy to life sciences ». Dans 2024 International Conference Laser Optics (ICLO), 510. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624280.
Texte intégralMencik, Alexandre. « Exploring the Intersection Between Space and Life Sciences ». Dans IAF/IAA Space Life Sciences Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 802–15. Paris, France : International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078355-0095.
Texte intégralWOMACK, W. « Spacelab Life Sciences 1 - Dedicated life sciences mission ». Dans Space Programs and Technologies Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-3538.
Texte intégral« LIFE SCIENCES VIEWING ROOM ». Dans 3rd International Conference on Computer Supported Education. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003353704450448.
Texte intégralYOUNG, R. « Space Station - Life sciences ». Dans Space Station in the 21st Century. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-2346.
Texte intégralVdovina, N. V., et A. V. Nikolenko. « Yuri Nikolaevich Stolyarov – a legendary person ». Dans Yu.N. Stolyarov : Life in Science, 6–11. Scientific and Publishing Center "Science" of the Russian Academy of Sciences, 2024. https://doi.org/10.52929/9785605111016_6.
Texte intégralMol, Arthur. « Keynote 1. FAIR Data Science for Green Life Sciences. Prof. Dr. Ir. Arthur Mol ». Dans Scientific Symposium FAIR Data Sciences for Green Life Sciences. Wageningen University & Research, 2018. http://dx.doi.org/10.18174/fairdata0.16263.
Texte intégralMaksimova, S. V. « The name of the outstanding Scientist Yuri Nikolaevich Stolyarov was assigned to the Yakut Scientific Research Institute of Reading ». Dans Yu.N. Stolyarov : Life in Science, 61–65. Scientific and Publishing Center "Science" of the Russian Academy of Sciences, 2024. https://doi.org/10.52929/9785605111016_61.
Texte intégralKazeni, Monde, et Nosipho Mkhwanazi. « LIFE SCIENCES TEACHERS’ UNDERSTANDING, PERCEPTIONS AND ADOPTION OF INQUIRY-BASED SCIENCE EDUCATION IN SELECTED SOUTH AFRICAN HIGH SCHOOLS ». Dans International Conference on Education and New Developments. inScience Press, 2021. http://dx.doi.org/10.36315/2021end006.
Texte intégralLang, H. P., F. Huber, J. Zhang et Ch Gerber. « MEMS technologies in life sciences ». Dans 2013 Transducers & Eurosensors XXVII : The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6626686.
Texte intégralRapports d'organisations sur le sujet "Life sciences"
Day, L., dir. Life sciences. Office of Scientific and Technical Information (OSTI), avril 1991. http://dx.doi.org/10.2172/5109458.
Texte intégralCorrell, D., et A. Hazi. Physical and Life Sciences 2008 Science & ; Technology Highlights. Office of Scientific and Technical Information (OSTI), mai 2009. http://dx.doi.org/10.2172/959069.
Texte intégralHong-Geller, Elizabeth. National Security Life Sciences Overview. Office of Scientific and Technical Information (OSTI), octobre 2022. http://dx.doi.org/10.2172/1894796.
Texte intégralOskolkov, Nikolay. Deep Learning for the Life Sciences. Instats Inc., 2024. https://doi.org/10.61700/zjxxse1x3u05y1846.
Texte intégralDill, H. G. Orecretes linking geosciences and life sciences. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296578.
Texte intégralMarrone, B. L., et L. S. Cram. Life Sciences Division annual report, 1988. Office of Scientific and Technical Information (OSTI), avril 1989. http://dx.doi.org/10.2172/6076332.
Texte intégralHong-Geller, Elizabeth. National Security Life Sciences at LANL. Office of Scientific and Technical Information (OSTI), octobre 2022. http://dx.doi.org/10.2172/1891787.
Texte intégralOskolkov, Nikolay. Dimension Reduction Methods for Life Sciences. Instats Inc., 2024. http://dx.doi.org/10.61700/gyxh9ued08xio1347.
Texte intégralStanley-Wall, Nicola, Amy Cameron, Erin Hardee, Andrea Davies, Alan Prescott, Paul Harrison, Ali Floyd et al. School of Life Sciences Research Jigsaw Puzzles. University of Dundee, juillet 2024. http://dx.doi.org/10.20933/100001317.
Texte intégralFlaherty, Julia E., et Ernest J. Antonio. Life Sciences Laboratory 2 Fan Exhaust Mixing Study. Office of Scientific and Technical Information (OSTI), juin 2016. http://dx.doi.org/10.2172/1411939.
Texte intégral