Articles de revues sur le sujet « Limonoid Biosynthesis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 43 meilleurs articles de revues pour votre recherche sur le sujet « Limonoid Biosynthesis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
De La Peña, Ricardo, Hannah Hodgson, Jack Chun-Ting Liu, et al. "Complex scaffold remodeling in plant triterpene biosynthesis." Science 379, no. 6630 (2023): 361–68. http://dx.doi.org/10.1126/science.adf1017.
Texte intégralHodgson, Hannah, Ricardo De La Peña, Michael J. Stephenson, et al. "Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production." Proceedings of the National Academy of Sciences 116, no. 34 (2019): 17096–104. http://dx.doi.org/10.1073/pnas.1906083116.
Texte intégralPandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis." Phytochemistry 184 (April 2021): 112669. http://dx.doi.org/10.1016/j.phytochem.2021.112669.
Texte intégralPandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Corrigendum to "Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis" [Phytochemistry 184 (2021) 112669]." Phytochemistry 187 (April 30, 2021): 112669. https://doi.org/10.1016/j.phytochem.2021.112669.
Texte intégralHerman, Zareb, Chi H. Fong, and Shin Hasegawa. "Biosynthesis of limonoid glucosides in navel orange." Phytochemistry 30, no. 5 (1991): 1487–88. http://dx.doi.org/10.1016/0031-9422(91)84193-v.
Texte intégralPandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Corrigendum to “Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis” [Phytochemistry 184 (2021) 112669]." Phytochemistry 187 (July 2021): 112751. http://dx.doi.org/10.1016/j.phytochem.2021.112751.
Texte intégralFong, Chi H., Shin Hasegawa, Zareb Herman, and Peter Ou. "Biosynthesis of limonoid glucosides in lemon (Citrus limon)." Journal of the Science of Food and Agriculture 54, no. 3 (1991): 393–98. http://dx.doi.org/10.1002/jsfa.2740540310.
Texte intégralOu, Peter, Shin Hasegawa, Zareb Herman, and Chi H. Fong. "Limonoid biosynthesis in the stem of Citrus limon." Phytochemistry 27, no. 1 (1988): 115–18. http://dx.doi.org/10.1016/0031-9422(88)80600-9.
Texte intégralLiu, Cuihua, Min He, Zhuang Wang, and Juan Xu. "Integrative Analysis of Terpenoid Profiles and Hormones from Fruits of Red-Flesh Citrus Mutants and Their Wild Types." Molecules 24, no. 19 (2019): 3456. http://dx.doi.org/10.3390/molecules24193456.
Texte intégralHullin-Matsuda, Françoise, Nario Tomishige, Shota Sakai, et al. "Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum." Journal of Biological Chemistry 287, no. 29 (2012): 24397–411. http://dx.doi.org/10.1074/jbc.m112.344432.
Texte intégralLi, Wanshan, Li Shen, Torsten Bruhn, Patchara Pedpradab, Jun Wu, and Gerhard Bringmann. "Trangmolins A-F with an Unprecedented Structural Plasticity of the Rings A and B: New Insight into Limonoid Biosynthesis." Chemistry - A European Journal 22, no. 33 (2016): 11719–27. http://dx.doi.org/10.1002/chem.201602230.
Texte intégralZhang, Xiaoyue, Qinyang Song, Hanghang Zheng, Rui Wang, and Qiang Zhang. "Toxicity and Metabolomic Dysfunction Invoked by Febrifugin, a Harmful Component of Edible Nut of Swietenia macrophylla." International Journal of Molecular Sciences 25, no. 17 (2024): 9753. http://dx.doi.org/10.3390/ijms25179753.
Texte intégralLi, Wan-Shan, Attila Mándi, Jun-Jun Liu, Li Shen, Tibor Kurtán, and Jun Wu. "Xylomolones A–D from the Thai Mangrove Xylocarpus moluccensis: Assignment of Absolute Stereostructures and Unveiling a Convergent Strategy for Limonoid Biosynthesis." Journal of Organic Chemistry 84, no. 5 (2019): 2596–606. http://dx.doi.org/10.1021/acs.joc.8b03037.
Texte intégralTsamo, Armelle Tontsa, Julio Issah Mawouma Pagna, Pamela Kemda Nangmo, Pierre Mkounga, Hartmut Laatsch, and Augustin Ephrem Nkengfack. "Rubescins F–H, new vilasinin-type limonoids from the leaves of Trichilia rubescens (Meliaceae)." Zeitschrift für Naturforschung C 74, no. 7-8 (2019): 175–82. http://dx.doi.org/10.1515/znc-2018-0187.
Texte intégralNarender, Tadigoppula, Tanvir Khaliq, Shweta, Kancharla P. Reddy, and Ravi K. Sharma. "Occurrence, Biosynthesis, Biological activity and NMR Spectroscopy of D and B, D Ring Seco-limonoids of Meliaceae Family." Natural Product Communications 2, no. 2 (2007): 1934578X0700200. http://dx.doi.org/10.1177/1934578x0700200219.
Texte intégralHashinaga, Fumio, Chi H. Fong, and Shin Hasegawa. "Biosynthesis of Limonoids inCitrus sudachi." Agricultural and Biological Chemistry 54, no. 11 (1990): 3019–20. http://dx.doi.org/10.1080/00021369.1990.10870416.
Texte intégralHASHINAGA, Fumio, Chi H. FONG, and Shin HASEGAWA. "Biosynthesis of limonoids in Citrus sudachi." Agricultural and Biological Chemistry 54, no. 11 (1990): 3019–20. http://dx.doi.org/10.1271/bbb1961.54.3019.
Texte intégralZhou, Yu, Yuxiang Zhang, Detian Mu, et al. "Selection of Reference Genes in Evodia rutaecarpa var. officinalis and Expression Patterns of Genes Involved in Its Limonin Biosynthesis." Plants 12, no. 18 (2023): 3197. http://dx.doi.org/10.3390/plants12183197.
Texte intégralHasegawa, Shin, Zareb Herman, Ed Orme, and Peter Ou. "Biosynthesis of limonoids in Citrus: Sites and translocation." Phytochemistry 25, no. 12 (1986): 2783–85. http://dx.doi.org/10.1016/s0031-9422(00)83741-3.
Texte intégralJin, Jie, Xinhuang Lv, Ben Wang та ін. "Limonin Inhibits IL-1β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2". Oxidative Medicine and Cellular Longevity 2021 (9 листопада 2021): 1–15. http://dx.doi.org/10.1155/2021/7292512.
Texte intégralHasegawa, Shin, and Zareb Herman. "Biosynthesis of limonoids: Conversion of deacetylnomilinate to nomilin in Citrus limon." Phytochemistry 25, no. 11 (1986): 2523–24. http://dx.doi.org/10.1016/s0031-9422(00)84500-8.
Texte intégralRodríguez Ceraolo, Cecilia, Valeria Vázquez, Ignacio Migues, María Verónica Cesio, Fernando Rivas, and Horacio Heinzen. "Flavonoids and Limonoids Profiles Variation in Leaves from Mandarin Cultivars and Its Relationship with Alternate Bearing." Agronomy 12, no. 1 (2022): 121. http://dx.doi.org/10.3390/agronomy12010121.
Texte intégralHerman, Z. "Limonin biosynthesis from obacunone via obacunoate in Citrus limon." Phytochemistry 23, no. 12 (1985): 2911–13. http://dx.doi.org/10.1016/s0031-9422(00)80603-2.
Texte intégralHerman, Zareb, and Shin Hasegawa. "Limonin biosynthesis from obacunone via obacunoate in Citrus limon." Phytochemistry 24, no. 12 (1985): 2911–13. http://dx.doi.org/10.1016/0031-9422(85)80025-x.
Texte intégralSu, Xinyao, Zhipeng Liang, Qiang Xue, Jia Liu, Xuemi Hao, and Caixia Wang. "A comprehensive review of azadirachtin: physicochemical properties, bioactivities, production, and biosynthesis." Acupuncture and Herbal Medicine 3, no. 4 (2023): 256–70. http://dx.doi.org/10.1097/hm9.0000000000000086.
Texte intégralHu, Wei-Min, and Jun Wu. "Protoxylogranatin B, a Key Biosynthetic Intermediate from Xylocarpus granatum: Suggesting an Oxidative Cleavage Biogenetic Pathway to Limonoid." Open Natural Products Journal 3, no. 1 (2010): 1–5. http://dx.doi.org/10.2174/1874848101003010001.
Texte intégralIzumi, Yuriko, Eri Kamei, Yoko Miyamoto, et al. "Role of the Pathotype-Specific ACRTS1 Gene Encoding a Hydroxylase Involved in the Biosynthesis of Host-Selective ACR-Toxin in the Rough Lemon Pathotype of Alternaria alternata." Phytopathology® 102, no. 8 (2012): 741–48. http://dx.doi.org/10.1094/phyto-02-12-0021-r.
Texte intégralVasquez‐Ruiz, Vianey, M. Ángeles Ramírez‐Cisneros, and Maria Yolanda Rios. "Triterpenes and limonoids of Cedrela : Distribution, biosynthesis, and 1 H and 13 C NMR data." Magnetic Resonance in Chemistry 60, no. 3 (2021): 275–358. http://dx.doi.org/10.1002/mrc.5229.
Texte intégralVilla-Ruano, Nemesio, Luis Ángel Morales-Mora, Jenaro Leocadio Varela-Caselis, Antonio Rivera, María de los Ángeles Valencia de Ita, and Omar Romero-Arenas. "Arcopilus aureus MaC7A as a New Source of Resveratrol: Assessment of Amino Acid Precursors, Volatiles, and Fungal Enzymes for Boosting Resveratrol Production in Batch Cultures." Applied Sciences 11, no. 10 (2021): 4583. http://dx.doi.org/10.3390/app11104583.
Texte intégralWashington, Taylor L., Fabiana V. Briceno, Charles A. Sims, Katlyn Nau, Yavuz Yagiz, and Liwei Gu. "Macroporous adsorbent resin debittering of Huang long bing (HLB)‐affected orange juice and its impacts on consumer sensory acceptance." Journal of Food Science 90, no. 2 (2025). https://doi.org/10.1111/1750-3841.70048.
Texte intégral"Citrus Limonoid Glucosyltransferase: AKey Player For Natural Debittering And Anticancerous Potential." Archives of Life Science and Nurtitional Research, November 28, 2017, 1–16. http://dx.doi.org/10.31829/2765-8368/alsnr2017-1(1)-101.
Texte intégralYu, Fang, Babu Gajendran, Ning Wang, et al. "ERK activation via A1542/3 limonoids attenuates erythroleukemia through transcriptional stimulation of cholesterol biosynthesis genes." BMC Cancer 21, no. 1 (2021). http://dx.doi.org/10.1186/s12885-021-08402-6.
Texte intégralHodgson, Hannah, Michael J. Stephenson, Shingo Kikuchi, et al. "Plants Utilize a Protection/Deprotection Strategy in Limonoid Biosynthesis: A “Missing Link” Carboxylesterase Boosts Yields and Provides Insights into Furan Formation." Journal of the American Chemical Society, October 17, 2024. http://dx.doi.org/10.1021/jacs.4c11213.
Texte intégralChuang, Ling, Shenyu Liu, Dave Biedermann, and Jakob Franke. "Identification of early quassinoid biosynthesis in the invasive tree of heaven (Ailanthus altissima) confirms evolutionary origin from protolimonoids." Frontiers in Plant Science 13 (August 23, 2022). http://dx.doi.org/10.3389/fpls.2022.958138.
Texte intégralZhang, Pan, Xiaofeng Liu, Xin Yu, et al. "The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus." BMC Plant Biology 20, no. 1 (2020). http://dx.doi.org/10.1186/s12870-020-02475-4.
Texte intégralCui, Gaofeng, Yun Li, Xin Yi, et al. "Meliaceae genomes provide insights into wood development and limonoids biosynthesis." Plant Biotechnology Journal, December 2022. http://dx.doi.org/10.1111/pbi.13973.
Texte intégralSu, Jianmu, Mingmin Jiang, Huimin Pan, et al. "Multi-omics analyses reveal the effects of layerage and grafting on flavonoid synthesis and accumulation in Citrus reticulata ‘Chachi’." Horticulture Research, July 7, 2025. https://doi.org/10.1093/hr/uhaf177.
Texte intégralZhang, Pan, Xiaofeng Liu, Xin Yu, et al. "Correction to: The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus." BMC Plant Biology 20, no. 1 (2020). http://dx.doi.org/10.1186/s12870-020-02491-4.
Texte intégralWang, Fusheng, Mei Wang, Xiaona Liu, et al. "Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis." Frontiers in Plant Science 8 (May 12, 2017). http://dx.doi.org/10.3389/fpls.2017.00782.
Texte intégralMahur, Pragati, Abhishek Sharma, Amit Kumar Singh, Jayaraman Muthukumaran, and Monika Jain. "Computational Exploration of Limonin as a Potential Inhibitor of DapB in Klebsiella pneumoniae." Chemistry & Biodiversity, October 2024. http://dx.doi.org/10.1002/cbdv.202402053.
Texte intégralLu, Yingying, Huimin Liang, Jialin Liao, et al. "Chromosome-scale assembly and analysis of yellow Camellia (Camellia limonia) genome reveal plant adaptation mechanism and flavonoid biosynthesis in karst region." Global Ecology and Conservation, November 2024, e03296. http://dx.doi.org/10.1016/j.gecco.2024.e03296.
Texte intégralAarthy, Thiagarayaselvam, Fayaj A. Mulani, Avinash Pandreka, et al. "Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension." BMC Plant Biology 18, no. 1 (2018). http://dx.doi.org/10.1186/s12870-018-1447-6.
Texte intégral"Book reviews: Citrus Limonoids: Functional Chemicals in Agriculture and Food, ed. Mark A. Berhow, Shin Hasegawa and Gary D. Manners (reviewed by Robert A. Hill); Biosynthesis: Polyketides and Vitamins, ed. F. J. Leeper and J. C. Vederas (reviewed by Dr Alison Hill); Biosynthesis: Aromatic Polyketides, Isoprenoids and Alkaloids, F. J. Leeper and J. C. Vederas (reviewed by T. J. Simpson); Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application, ed. J. L. McGuire (reviewed by Barrie Wilkinson); Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses. Vol. 2, Ivan A. Ross (reviewed by Thomas Hemscheidt); Amino Acids, Peptides and Proteins, J. S. Davies (reviewed by Douglas Young); Virtual Screening for Bioactive Molecules, H.-J. Böhm and G. Schneider (reviewed by Dr John B. O. Mitchell); Biologically Active Natural Products: Pharmaceuticals, S. J. Cutler and H. G. Cutler (reviewed by John Mann)." Natural Product Reports 18, no. 3 (2001): 356–60. http://dx.doi.org/10.1039/b103593m.
Texte intégral