Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Limonoid Biosynthesis.

Articles de revues sur le sujet « Limonoid Biosynthesis »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 43 meilleurs articles de revues pour votre recherche sur le sujet « Limonoid Biosynthesis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

De La Peña, Ricardo, Hannah Hodgson, Jack Chun-Ting Liu, et al. "Complex scaffold remodeling in plant triterpene biosynthesis." Science 379, no. 6630 (2023): 361–68. http://dx.doi.org/10.1126/science.adf1017.

Texte intégral
Résumé :
Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hodgson, Hannah, Ricardo De La Peña, Michael J. Stephenson, et al. "Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production." Proceedings of the National Academy of Sciences 116, no. 34 (2019): 17096–104. http://dx.doi.org/10.1073/pnas.1906083116.

Texte intégral
Résumé :
Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree (Azadirachta indica). Despite intensive investigation of limonoids over the last half century, the route of limonoid biosynthesis remains unknown. Limonoids are classified as tetranortriterpenes because the prototypical 26-carbon limonoid scaffold is postulated to b
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis." Phytochemistry 184 (April 2021): 112669. http://dx.doi.org/10.1016/j.phytochem.2021.112669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Corrigendum to "Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis" [Phytochemistry 184 (2021) 112669]." Phytochemistry 187 (April 30, 2021): 112669. https://doi.org/10.1016/j.phytochem.2021.112669.

Texte intégral
Résumé :
Pandreka, Avinash, Chaya, Patil S., Kumar, Ashish, Aarthy, Thiagarayaselvam, Mulani, Fayaj A., Bhagyashree, Date D., Shilpashree, H.B., Jennifer, Cheruvathur, Ponnusamy, Sudha, Nagegowda, Dinesh, Thulasiram, Hirekodathakallu V. (2021): Corrigendum to "Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis" [Phytochemistry 184 (2021) 112669]. Phytochemistry (112751) 187: 112669, DOI: 10.1016/j.phytochem.2021.112669, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112669
Styles APA, Harvard, Vancouver, ISO, etc.
5

Herman, Zareb, Chi H. Fong, and Shin Hasegawa. "Biosynthesis of limonoid glucosides in navel orange." Phytochemistry 30, no. 5 (1991): 1487–88. http://dx.doi.org/10.1016/0031-9422(91)84193-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pandreka, Avinash, Patil S. Chaya, Ashish Kumar, et al. "Corrigendum to “Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis” [Phytochemistry 184 (2021) 112669]." Phytochemistry 187 (July 2021): 112751. http://dx.doi.org/10.1016/j.phytochem.2021.112751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fong, Chi H., Shin Hasegawa, Zareb Herman, and Peter Ou. "Biosynthesis of limonoid glucosides in lemon (Citrus limon)." Journal of the Science of Food and Agriculture 54, no. 3 (1991): 393–98. http://dx.doi.org/10.1002/jsfa.2740540310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ou, Peter, Shin Hasegawa, Zareb Herman, and Chi H. Fong. "Limonoid biosynthesis in the stem of Citrus limon." Phytochemistry 27, no. 1 (1988): 115–18. http://dx.doi.org/10.1016/0031-9422(88)80600-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Cuihua, Min He, Zhuang Wang, and Juan Xu. "Integrative Analysis of Terpenoid Profiles and Hormones from Fruits of Red-Flesh Citrus Mutants and Their Wild Types." Molecules 24, no. 19 (2019): 3456. http://dx.doi.org/10.3390/molecules24193456.

Texte intégral
Résumé :
In citrus color mutants, the levels of carotenoid constituents and other secondary metabolites are different in their corresponding wild types. Terpenoids are closely related to coloration, bitterness, and flavor. In this study, terpenoid profiles and hormones in citrus fruits of two red-flesh mutants—Red Anliu orange and Red-flesh Guanxi pummelo—and their corresponding wild types were investigated using GC/MS, HPLC, and LC-MS/MS. Results showed that Red Anliu orange (high in carotenoids) and Anliu orange (low in carotenoids) accumulated low levels of limonoid aglycones but high levels of mono
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hullin-Matsuda, Françoise, Nario Tomishige, Shota Sakai, et al. "Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum." Journal of Biological Chemistry 287, no. 29 (2012): 24397–411. http://dx.doi.org/10.1074/jbc.m112.344432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Li, Wanshan, Li Shen, Torsten Bruhn, Patchara Pedpradab, Jun Wu, and Gerhard Bringmann. "Trangmolins A-F with an Unprecedented Structural Plasticity of the Rings A and B: New Insight into Limonoid Biosynthesis." Chemistry - A European Journal 22, no. 33 (2016): 11719–27. http://dx.doi.org/10.1002/chem.201602230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Xiaoyue, Qinyang Song, Hanghang Zheng, Rui Wang, and Qiang Zhang. "Toxicity and Metabolomic Dysfunction Invoked by Febrifugin, a Harmful Component of Edible Nut of Swietenia macrophylla." International Journal of Molecular Sciences 25, no. 17 (2024): 9753. http://dx.doi.org/10.3390/ijms25179753.

Texte intégral
Résumé :
Swietenia macrophylla fruit is a valuable and historically significant medicinal plant with anti-hypertension and anti-diabetes. We identified a toxic component, Febrifugin, from the edible part of the nut following zebrafish toxicity-guided isolation. Febrifugin is a mexicanolide-type limonoid compound. The toxic factor induced acute toxicity in zebrafish, including yolk sac edema and pericardial edema, reduced body length, decreased melanin deposition, and presented acute skeletal developmental issues. Further exploration of the acute toxicity mechanism through metabolomics revealed that Feb
Styles APA, Harvard, Vancouver, ISO, etc.
13

Li, Wan-Shan, Attila Mándi, Jun-Jun Liu, Li Shen, Tibor Kurtán, and Jun Wu. "Xylomolones A–D from the Thai Mangrove Xylocarpus moluccensis: Assignment of Absolute Stereostructures and Unveiling a Convergent Strategy for Limonoid Biosynthesis." Journal of Organic Chemistry 84, no. 5 (2019): 2596–606. http://dx.doi.org/10.1021/acs.joc.8b03037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Tsamo, Armelle Tontsa, Julio Issah Mawouma Pagna, Pamela Kemda Nangmo, Pierre Mkounga, Hartmut Laatsch, and Augustin Ephrem Nkengfack. "Rubescins F–H, new vilasinin-type limonoids from the leaves of Trichilia rubescens (Meliaceae)." Zeitschrift für Naturforschung C 74, no. 7-8 (2019): 175–82. http://dx.doi.org/10.1515/znc-2018-0187.

Texte intégral
Résumé :
Abstract Three new limonoids, designated as rubescins F (1), G (2), and H (3), together with two known compounds of this type, TS1 (4) and trichirubine A (5), were isolated from methylene chloride/methanol extracts of Trichilia rubescens leaves. The structures of these compounds were elucidated based on 1D and 2D nuclear magnetic resonance (NMR) analysis and complemented by electrospray ionization high-resolution mass spectrometry results and by comparison to data of related compounds described in the literature and ab initio calculations. Rubescin F (1) is the first limonoid from Trichilia sp
Styles APA, Harvard, Vancouver, ISO, etc.
15

Narender, Tadigoppula, Tanvir Khaliq, Shweta, Kancharla P. Reddy, and Ravi K. Sharma. "Occurrence, Biosynthesis, Biological activity and NMR Spectroscopy of D and B, D Ring Seco-limonoids of Meliaceae Family." Natural Product Communications 2, no. 2 (2007): 1934578X0700200. http://dx.doi.org/10.1177/1934578x0700200219.

Texte intégral
Résumé :
Limonoids are modified tetranortriterpenoids, classified on the basis of which of the four rings (A, B, C and D) in the intact triterpene nucleus have been oxidized. The order Rutales produces a variety of seco-limonoids, such as A, B, C, D, AB, AD, and BD-ring seco-limonoids. The Meliaceae family, belonging to the order Rutales, has yielded several D-ring and B, D-ring seco-limonoids This review describes the occurrence, biosynthesis, biological activity and NMR spectroscopy of D ring seco-limonoids, such as gedunin derivatives and B, D-ring seco-limonoids, such as methyl angolensates, xylocc
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hashinaga, Fumio, Chi H. Fong, and Shin Hasegawa. "Biosynthesis of Limonoids inCitrus sudachi." Agricultural and Biological Chemistry 54, no. 11 (1990): 3019–20. http://dx.doi.org/10.1080/00021369.1990.10870416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

HASHINAGA, Fumio, Chi H. FONG, and Shin HASEGAWA. "Biosynthesis of limonoids in Citrus sudachi." Agricultural and Biological Chemistry 54, no. 11 (1990): 3019–20. http://dx.doi.org/10.1271/bbb1961.54.3019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhou, Yu, Yuxiang Zhang, Detian Mu, et al. "Selection of Reference Genes in Evodia rutaecarpa var. officinalis and Expression Patterns of Genes Involved in Its Limonin Biosynthesis." Plants 12, no. 18 (2023): 3197. http://dx.doi.org/10.3390/plants12183197.

Texte intégral
Résumé :
E. rutaecarpa var. officinalis is a traditional Chinese medicinal plant known for its therapeutic effects, which encompass the promotion of digestion, the dispelling of cold, the alleviation of pain, and the exhibition of anti-inflammatory and antibacterial properties. The principal active component of this plant, limonin, is a potent triterpene compound with notable pharmacological activities. Despite its significance, the complete biosynthesis pathway of limonin in E. rutaecarpa var. officinalis remains incompletely understood, and the underlying molecular mechanisms remain unexplored. The m
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hasegawa, Shin, Zareb Herman, Ed Orme, and Peter Ou. "Biosynthesis of limonoids in Citrus: Sites and translocation." Phytochemistry 25, no. 12 (1986): 2783–85. http://dx.doi.org/10.1016/s0031-9422(00)83741-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Jin, Jie, Xinhuang Lv, Ben Wang та ін. "Limonin Inhibits IL-1β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2". Oxidative Medicine and Cellular Longevity 2021 (9 листопада 2021): 1–15. http://dx.doi.org/10.1155/2021/7292512.

Texte intégral
Résumé :
Osteoarthritis (OA), a degenerative disorder, is considered to be one of the most common forms of arthritis. Limonin (Lim) is extracted from lemons and other citrus fruits. Limonin has been reported to have anti-inflammatory effects, while inflammation is a major cause of OA; thus, we propose that limonin may have a therapeutic effect on OA. In this study, the therapeutic effect of limonin on OA was assessed in chondrocytes in vitro in IL-1β induced OA and in the destabilization of the medial meniscus (DMM) mice in vivo. The Nrf2/HO-1/NF-κB signaling pathway was evaluated to illustrate the wor
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hasegawa, Shin, and Zareb Herman. "Biosynthesis of limonoids: Conversion of deacetylnomilinate to nomilin in Citrus limon." Phytochemistry 25, no. 11 (1986): 2523–24. http://dx.doi.org/10.1016/s0031-9422(00)84500-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Rodríguez Ceraolo, Cecilia, Valeria Vázquez, Ignacio Migues, María Verónica Cesio, Fernando Rivas, and Horacio Heinzen. "Flavonoids and Limonoids Profiles Variation in Leaves from Mandarin Cultivars and Its Relationship with Alternate Bearing." Agronomy 12, no. 1 (2022): 121. http://dx.doi.org/10.3390/agronomy12010121.

Texte intégral
Résumé :
Alternate bearing in citrus trees has been extensively studied as a key feature for citrus growers. Although the genetic and the biochemical process occurring during alternate bearing has been studied extensively, there is a lack of information identifying the presence of metabolic indicators during “on” and “off” years. In citrus plants, leaves play a central role in the metabolic pathway triggering the flowering induction process. To investigate the changes during this transition, a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis of the leaf profiles of 20 compo
Styles APA, Harvard, Vancouver, ISO, etc.
23

Herman, Z. "Limonin biosynthesis from obacunone via obacunoate in Citrus limon." Phytochemistry 23, no. 12 (1985): 2911–13. http://dx.doi.org/10.1016/s0031-9422(00)80603-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Herman, Zareb, and Shin Hasegawa. "Limonin biosynthesis from obacunone via obacunoate in Citrus limon." Phytochemistry 24, no. 12 (1985): 2911–13. http://dx.doi.org/10.1016/0031-9422(85)80025-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Su, Xinyao, Zhipeng Liang, Qiang Xue, Jia Liu, Xuemi Hao, and Caixia Wang. "A comprehensive review of azadirachtin: physicochemical properties, bioactivities, production, and biosynthesis." Acupuncture and Herbal Medicine 3, no. 4 (2023): 256–70. http://dx.doi.org/10.1097/hm9.0000000000000086.

Texte intégral
Résumé :
Azadirachtin, a complex tetratriterpenoid limonin with potent insecticidal properties, is the most widely used biological pesticide worldwide. Its versatile pharmacological applications include the inhibition of tumor growth and anti-malarial, anti-bacterial, and anti-inflammatory properties. Azadirachtin plays a pivotal role in pest control and novel drug development. The primary source of azadirachtin is the neem tree (Azadirachta indica A. Juss), with an azadirachtin content ranging from 0.3% to 0.5%. Despite the market demand for botanical pesticides reaching approximately 100,000 tons per
Styles APA, Harvard, Vancouver, ISO, etc.
26

Hu, Wei-Min, and Jun Wu. "Protoxylogranatin B, a Key Biosynthetic Intermediate from Xylocarpus granatum: Suggesting an Oxidative Cleavage Biogenetic Pathway to Limonoid." Open Natural Products Journal 3, no. 1 (2010): 1–5. http://dx.doi.org/10.2174/1874848101003010001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Izumi, Yuriko, Eri Kamei, Yoko Miyamoto, et al. "Role of the Pathotype-Specific ACRTS1 Gene Encoding a Hydroxylase Involved in the Biosynthesis of Host-Selective ACR-Toxin in the Rough Lemon Pathotype of Alternaria alternata." Phytopathology® 102, no. 8 (2012): 741–48. http://dx.doi.org/10.1094/phyto-02-12-0021-r.

Texte intégral
Résumé :
The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of the rootstock species rough lemon (Citrus jambhiri) and Rangpur lime (C. limonia). Genes controlling toxin production were localized to a 1.5-Mb chromosome carrying the ACR-toxin biosynthesis gene cluster (ACRT) in the genome of the rough lemon pathotype. A genomic BAC clone containing a portion of the ACRT cluster was sequenced which allowed identification of three open reading frames present only in the genomes of ACR-toxin producing isolates. We studied the function
Styles APA, Harvard, Vancouver, ISO, etc.
28

Vasquez‐Ruiz, Vianey, M. Ángeles Ramírez‐Cisneros, and Maria Yolanda Rios. "Triterpenes and limonoids of Cedrela : Distribution, biosynthesis, and 1 H and 13 C NMR data." Magnetic Resonance in Chemistry 60, no. 3 (2021): 275–358. http://dx.doi.org/10.1002/mrc.5229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Villa-Ruano, Nemesio, Luis Ángel Morales-Mora, Jenaro Leocadio Varela-Caselis, Antonio Rivera, María de los Ángeles Valencia de Ita, and Omar Romero-Arenas. "Arcopilus aureus MaC7A as a New Source of Resveratrol: Assessment of Amino Acid Precursors, Volatiles, and Fungal Enzymes for Boosting Resveratrol Production in Batch Cultures." Applied Sciences 11, no. 10 (2021): 4583. http://dx.doi.org/10.3390/app11104583.

Texte intégral
Résumé :
The chemical factors that regulate the synthesis of resveratrol (RV) in filamentous fungi are still unknown. This work reports on the RV production by Arcopilus aureus MaC7A under controlled conditions and the effect of amino acid precursors (PHE and TYR), monoterpenes (limonone, camphor, citral, thymol, menthol), and mixtures of hydrolytic enzymes (Glucanex) as elicitors for boosting fungal RV. Batch cultures with variable concentrations of PHE and TYR (50–500 mg L−1) stimulated RV production from 127.9 ± 4.6 to 221.8 ± 5.2 mg L−1 in basic cultures developed in PDB (pH 7) added with 10 g L−1
Styles APA, Harvard, Vancouver, ISO, etc.
30

Washington, Taylor L., Fabiana V. Briceno, Charles A. Sims, Katlyn Nau, Yavuz Yagiz, and Liwei Gu. "Macroporous adsorbent resin debittering of Huang long bing (HLB)‐affected orange juice and its impacts on consumer sensory acceptance." Journal of Food Science 90, no. 2 (2025). https://doi.org/10.1111/1750-3841.70048.

Texte intégral
Résumé :
AbstractHuang long bing (HLB) infection of oranges induces the biosynthesis and accumulation of bitter limonoids. The objective of this study was to debitter HLB‐affected orange juice while preserving the tasteless and health‐promoting limonoid glucoside and flavanones using resin adsorption. Three resins (FPX66, PAD900, and XAD16N) were found to have higher adsorption and desorption capacity for limonin among seven selected resins. Adsorption of limonoids rapidly increased in the first 2 h of kinetic tests, while slower adsorption kinetics were observed for flavanones. Limonin isothermal adso
Styles APA, Harvard, Vancouver, ISO, etc.
31

"Citrus Limonoid Glucosyltransferase: AKey Player For Natural Debittering And Anticancerous Potential." Archives of Life Science and Nurtitional Research, November 28, 2017, 1–16. http://dx.doi.org/10.31829/2765-8368/alsnr2017-1(1)-101.

Texte intégral
Résumé :
Citrus fruits and juices are rich source of health benefitting phytochemicals which play a vital role in balanced diet and disease prevention. Citrus limonoids and flavonoids are the major phytochemicals which are of great interest in pharmaceutical industries because of their demonstrated anticancerous, antioxidant, anti-inflammatory, hormonal stimulation, antibacterial and antiviral actions. Citrus limonoid biosynthetic pathway contains an important regulatory limonoid glucosyltransferase enzyme (LGT). LGT is the natural debittering enzyme encoded by a single copy gene which has been isolate
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yu, Fang, Babu Gajendran, Ning Wang, et al. "ERK activation via A1542/3 limonoids attenuates erythroleukemia through transcriptional stimulation of cholesterol biosynthesis genes." BMC Cancer 21, no. 1 (2021). http://dx.doi.org/10.1186/s12885-021-08402-6.

Texte intégral
Résumé :
Abstract Background Cholesterol plays vital roles in human physiology; abnormal levels have deleterious pathological consequences. In cancer, elevated or reduced expression of cholesterol biosynthesis is associated with good or poor prognosis, but the underlying mechanisms are largely unknown. The limonoid compounds A1542 and A1543 stimulate ERK/MAPK by direct binding, leading to leukemic cell death and suppression of leukemia in mouse models. In this study, we investigated the downstream consequences of these ERK/MAPK agonists in leukemic cells. Methods We employed RNAseq analysis combined wi
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hodgson, Hannah, Michael J. Stephenson, Shingo Kikuchi, et al. "Plants Utilize a Protection/Deprotection Strategy in Limonoid Biosynthesis: A “Missing Link” Carboxylesterase Boosts Yields and Provides Insights into Furan Formation." Journal of the American Chemical Society, October 17, 2024. http://dx.doi.org/10.1021/jacs.4c11213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chuang, Ling, Shenyu Liu, Dave Biedermann, and Jakob Franke. "Identification of early quassinoid biosynthesis in the invasive tree of heaven (Ailanthus altissima) confirms evolutionary origin from protolimonoids." Frontiers in Plant Science 13 (August 23, 2022). http://dx.doi.org/10.3389/fpls.2022.958138.

Texte intégral
Résumé :
The tree of heaven, Ailanthus altissima (MILL.) SWINGLE, is a globally invasive plant known to secrete allelopathic metabolites called quassinoids. Quassinoids are highly modified triterpenoids. So far, nothing has been known about the biochemical basis of quassinoid biosynthesis. Here, based on transcriptome and metabolome data of Ailanthus altissima, we present the first three steps of quassinoid biosynthesis, which are catalysed by an oxidosqualene cyclase and two cytochrome P450 monooxygenases, resulting in the formation of the protolimonoid melianol. Strikingly, these steps are identical
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhang, Pan, Xiaofeng Liu, Xin Yu, et al. "The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus." BMC Plant Biology 20, no. 1 (2020). http://dx.doi.org/10.1186/s12870-020-02475-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Cui, Gaofeng, Yun Li, Xin Yi, et al. "Meliaceae genomes provide insights into wood development and limonoids biosynthesis." Plant Biotechnology Journal, December 2022. http://dx.doi.org/10.1111/pbi.13973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Su, Jianmu, Mingmin Jiang, Huimin Pan, et al. "Multi-omics analyses reveal the effects of layerage and grafting on flavonoid synthesis and accumulation in Citrus reticulata ‘Chachi’." Horticulture Research, July 7, 2025. https://doi.org/10.1093/hr/uhaf177.

Texte intégral
Résumé :
Abstract Guangdong Citri Reticulatae Pericarpium from the dry and mature peel of Citrus reticulata ‘Chachi’ (CRC) is a well-known medicinal and food materials in Asia. The main propagation methods of CRC are layerage and grafting. It is generally considered that the quality of CRC from layerage is superior to that obtained from plants propagated by grafting. Nevertheless, the effects of layerage and grafting on main bioactive ingredients flavonoid biosynthesis in peel of CRC keep unknown. Here, metabolomic analyses revealed the effects of layerage, self-grafting and heterografting (C. limonia
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhang, Pan, Xiaofeng Liu, Xin Yu, et al. "Correction to: The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus." BMC Plant Biology 20, no. 1 (2020). http://dx.doi.org/10.1186/s12870-020-02491-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wang, Fusheng, Mei Wang, Xiaona Liu, et al. "Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis." Frontiers in Plant Science 8 (May 12, 2017). http://dx.doi.org/10.3389/fpls.2017.00782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mahur, Pragati, Abhishek Sharma, Amit Kumar Singh, Jayaraman Muthukumaran, and Monika Jain. "Computational Exploration of Limonin as a Potential Inhibitor of DapB in Klebsiella pneumoniae." Chemistry & Biodiversity, October 2024. http://dx.doi.org/10.1002/cbdv.202402053.

Texte intégral
Résumé :
Klebsiella pneumoniae has emerged as a significant multidrug‐resistant pathogen, classified as a critical priority by the World Health Organization. The rising rates of antibiotic resistance have led to increased therapeutic failures, diminishing the effectiveness of existing antibiotics. Consequently, there is an urgent need for alternative treatments to effectively inhibit the growth of K. pneumoniae and mitigate associated diseases. Phytochemicals have demonstrated potential advantages over traditional antibiotics, prompting their exploration as innovative therapeutic agents. This study aim
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lu, Yingying, Huimin Liang, Jialin Liao, et al. "Chromosome-scale assembly and analysis of yellow Camellia (Camellia limonia) genome reveal plant adaptation mechanism and flavonoid biosynthesis in karst region." Global Ecology and Conservation, November 2024, e03296. http://dx.doi.org/10.1016/j.gecco.2024.e03296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Aarthy, Thiagarayaselvam, Fayaj A. Mulani, Avinash Pandreka, et al. "Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension." BMC Plant Biology 18, no. 1 (2018). http://dx.doi.org/10.1186/s12870-018-1447-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

"Book reviews: Citrus Limonoids: Functional Chemicals in Agriculture and Food, ed. Mark A. Berhow, Shin Hasegawa and Gary D. Manners (reviewed by Robert A. Hill); Biosynthesis: Polyketides and Vitamins, ed. F. J. Leeper and J. C. Vederas (reviewed by Dr Alison Hill); Biosynthesis: Aromatic Polyketides, Isoprenoids and Alkaloids, F. J. Leeper and J. C. Vederas (reviewed by T. J. Simpson); Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application, ed. J. L. McGuire (reviewed by Barrie Wilkinson); Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses. Vol. 2, Ivan A. Ross (reviewed by Thomas Hemscheidt); Amino Acids, Peptides and Proteins, J. S. Davies (reviewed by Douglas Young); Virtual Screening for Bioactive Molecules, H.-J. Böhm and G. Schneider (reviewed by Dr John B. O. Mitchell); Biologically Active Natural Products: Pharmaceuticals, S. J. Cutler and H. G. Cutler (reviewed by John Mann)." Natural Product Reports 18, no. 3 (2001): 356–60. http://dx.doi.org/10.1039/b103593m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!