Littérature scientifique sur le sujet « Linear ODE »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Linear ODE ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Linear ODE"
Deutscher, Joachim, Nicole Gehring et Richard Kern. « Output feedback control of general linear heterodirectional hyperbolic ODE–PDE–ODE systems ». Automatica 95 (septembre 2018) : 472–80. http://dx.doi.org/10.1016/j.automatica.2018.06.021.
Texte intégralRadnef, Sorin. « Analytic Solution of Non-Autonomous Linear ODE ». PAMM 6, no 1 (décembre 2006) : 651–52. http://dx.doi.org/10.1002/pamm.200610306.
Texte intégralHu, Jie, Huihui Qin et Xiaodan Fan. « Can ODE gene regulatory models neglect time lag or measurement scaling ? » Bioinformatics 36, no 13 (23 avril 2020) : 4058–64. http://dx.doi.org/10.1093/bioinformatics/btaa268.
Texte intégralLorber, Alfred A., Graham F. Carey et Wayne D. Joubert. « ODE Recursions and Iterative Solvers for Linear Equations ». SIAM Journal on Scientific Computing 17, no 1 (janvier 1996) : 65–77. http://dx.doi.org/10.1137/0917006.
Texte intégralShi-Da, Liu, Fu Zun-Tao, Liu Shi-Kuo, Xin Guo-Jun, Liang Fu-Ming et Feng Bei-Ye. « Solitary Wave in Linear ODE with Variable Coefficients ». Communications in Theoretical Physics 39, no 6 (15 juin 2003) : 643–46. http://dx.doi.org/10.1088/0253-6102/39/6/643.
Texte intégralAyadi, Habib. « Exponential stabilization of an ODE–linear KdV cascaded system with boundary input delay ». IMA Journal of Mathematical Control and Information 37, no 4 (23 septembre 2020) : 1506–23. http://dx.doi.org/10.1093/imamci/dnaa022.
Texte intégralImoni, Sunday Obomeviekome, D. I. Lanlege, E. M. Atteh et J. O. Ogbondeminu. « FORMULATION OF BLOCK SCHEMES WITH LINEAR MULTISTEP METHOD FOR THE APPROXIMATION OF FIRST-ORDER IVPS ». FUDMA JOURNAL OF SCIENCES 4, no 3 (24 septembre 2020) : 313–22. http://dx.doi.org/10.33003/fjs-2020-0403-260.
Texte intégralPOSPÍŠIL, JIŘÍ, ZDENĚK KOLKA, JANA HORSKÁ et JAROMÍR BRZOBOHATÝ. « SIMPLEST ODE EQUIVALENTS OF CHUA'S EQUATIONS ». International Journal of Bifurcation and Chaos 10, no 01 (janvier 2000) : 1–23. http://dx.doi.org/10.1142/s0218127400000025.
Texte intégralMukhopadhyay, S., R. Picard, S. Trostorff et M. Waurick. « A note on a two-temperature model in linear thermoelasticity ». Mathematics and Mechanics of Solids 22, no 5 (8 décembre 2015) : 905–18. http://dx.doi.org/10.1177/1081286515611947.
Texte intégralAksan, Emine. « An application of cubic B-Spline finite element method for the Burgers` equation ». Thermal Science 22, Suppl. 1 (2018) : 195–202. http://dx.doi.org/10.2298/tsci170613286a.
Texte intégralThèses sur le sujet "Linear ODE"
D'Augustine, Anthony Frank. « MATLODE : A MATLAB ODE Solver and Sensitivity Analysis Toolbox ». Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83081.
Texte intégralMaster of Science
Albishi, Njwd. « Three-and four-derivative Hermite-Birkhoff-Obrechkoff solvers for stiff ODE ». Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34332.
Texte intégralDELLA, MARCA ROSSELLA. « Problemi di controllo in epidemiologia matematica e comportamentale ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1237622.
Texte intégralDespite major achievements in eliminating long-established infections (as in the very well known case of smallpox), recent decades have seen the continual emergence or re-emergence of infectious diseases (last but not least COVID-19). They are not only threats to global health, but direct and indirect costs generated by human and animal epidemics are responsible for significant economic losses worldwide. Mathematical models of infectious diseases spreading have played a significant role in infection control. On the one hand, they have given an important contribution to the biological and epidemiological understanding of disease outbreak patterns; on the other hand, they have helped to determine how and when to apply control measures in order to quickly and most effectively contain epidemics. Nonetheless, in order to shape local and global public health policies, it is essential to gain a better and more comprehensive understanding of effective actions to control diseases, by finding ways to employ new complexity layers. This was the main focus of the research I have carried out during my PhD; the products of this research are collected and connected in this thesis. However, because out of context, other problems I interested in have been excluded from this collection: they rely in the fields of autoimmune diseases and landscape ecology. We start with an Introduction chapter, which traces the history of epidemiological models, the rationales and the breathtaking incremental advances. We focus on two critical aspects: i) the qualitative and quantitative assessment of control strategies specific to the problem at hand (via e.g. optimal control or threshold policies); ii) the incorporation into the model of the human behavioral changes in response to disease dynamics. In this framework, our studies are inserted and contextualized. Hereafter, to each of them a specific chapter is devoted. The techniques used include the construction of appropriate models given by non-linear ordinary differential equations, their qualitative analysis (via e.g. stability and bifurcation theory), the parameterization and validation with available data. Numerical tests are performed with advanced simulation methods of dynamical systems. As far as optimal control problems are concerned, the formulation follows the classical approach by Pontryagin, while both direct and indirect optimization methods are adopted for the numerical resolution. In Chapter 1, within a basic Susceptible-Infected-Removed model framework, we address the problem of minimizing simultaneously the epidemic size and the eradication time via optimal vaccination or isolation strategies. A two-patches metapopulation epidemic model, describing the dynamics of Susceptibles and Infected in wildlife diseases, is formulated and analyzed in Chapter 2. Here, two types of localized culling strategies are considered and compared: proactive and reactive. Chapter 3 concerns a model for vaccine-preventable childhood diseases transmission, where newborns vaccination follows an imitation game dynamics and is affected by awareness campaigns by the public health system. Vaccination is also incorporated in the model of Chapter 4. Here, it addresses susceptible individuals of any age and depends on the information and rumors about the disease. Further, the vaccine effectiveness is assumed to be partial and waning over time. The last Chapter 5 is devoted to the ongoing pandemic of COVID-19. We build an epidemic model with information-dependent contact and quarantine rates. The model is applied to the Italian case and explicitly incorporates the progressive lockdown restrictions.
Hewitt, Laura L. « General linear methods for the solution of ODEs ». Thesis, University of Bath, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516948.
Texte intégralFarris, Thomas Edward. « Searching for the CP-odd Higgs at a linear collider / ». For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Texte intégralFernandes, Ray Stephen. « Very singular solutions of odd-order PDEs, with linear and nonlinear dispersion ». Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507233.
Texte intégralPaditz, Ludwig. « Using ClassPad-technology in the education of students of electrical engineering (Fourier- and Laplace-Transformation) ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80814.
Texte intégralPaditz, Ludwig. « Using ClassPad-technology in the education of students of electricalengineering (Fourier- and Laplace-Transformation) ». Proceedings of the tenth International Conference Models in Developing Mathematics Education. - Dresden : Hochschule für Technik und Wirtschaft, 2009. - S. 469 - 474, 2012. https://slub.qucosa.de/id/qucosa%3A1799.
Texte intégralStarkloff, Hans-Jörg, et Ralf Wunderlich. « Stationary solutions of linear ODEs with a randomly perturbed system matrix and additive noise ». Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501335.
Texte intégralBarreau, Matthieu. « Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism ». Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30058.
Texte intégralThis thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude
Livres sur le sujet "Linear ODE"
Saylor, Paul E. Linear iterative solvers for implicit ode methods. Hampton, Va : National Aeronautics and Space Administration, Langley Research Center, 1990.
Trouver le texte intégralC, Sprott Julien, et ebrary Inc, dir. 2-D quadratic maps and 3-D ODE systems : A rigorous approach. Singapore : World Scientific Pub. Co., 2010.
Trouver le texte intégralRobert, Hermann. Lie-theoretic ODE numerical analysis, mechanics, and differential systems. Brookline, Mass : Math Sci Press, 1994.
Trouver le texte intégralDer Diskos von Phaistos : Fremdeinfluss oder kretisches Erbe ? Norderstedt : Books on Demand, 2005.
Trouver le texte intégralManichev, Vladimir, Valentina Glazkova et Кузьмина Анастасия. Numerical methods. The authentic and exact solution of the differential and algebraic equations in SAE systems of SAPR. ru : INFRA-M Academic Publishing LLC., 2016. http://dx.doi.org/10.12737/13138.
Texte intégralHung, Pei-Ken. The linear stability of the Schwarzschild spacetime in the harmonic gauge : Odd part. [New York, N.Y.?] : [publisher not identified], 2018.
Trouver le texte intégralHettlich, Frank. Vorkurs Mathematik : Ein Arbeitsheft zur Vorbereitung auf den Start eines Hochschulstudiums in Mathematik, Informatik einer Naturwissenschaft oder einer Ingenieurwissenschaft. Aachen : Shaker, 2004.
Trouver le texte intégralZemanian, A. H. Realizability theory for continuous linear systems. New York : Dover, 1995.
Trouver le texte intégralThe minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic. Providence, R.I : American Mathematical Society, 2009.
Trouver le texte intégralAndreischeva, Elena. A collection of practical and laboratory works in higher mathematics. Elements of linear and vector algebra. Workshop. ru : INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1089868.
Texte intégralChapitres de livres sur le sujet "Linear ODE"
Enns, Richard H., et George C. McGuire. « Linear ODE Models ». Dans Computer Algebra Recipes, 325–96. New York, NY : Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0171-4_7.
Texte intégralBalser, Werner. « Formal solutions to non-linear ODE ». Dans From Divergent Power Series to Analytic Functions, 83–101. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073572.
Texte intégralRedaud, Jeanne, Federico Bribiesca-Argomedo et Jean Auriol. « Practical Output Regulation and Tracking for Linear ODE-hyperbolic PDE-ODE Systems ». Dans Advances in Distributed Parameter Systems, 143–69. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94766-8_7.
Texte intégralTadie. « Oscillation Criteria for some Semi-Linear Emden–Fowler ODE ». Dans Integral Methods in Science and Engineering, 607–15. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16727-5_51.
Texte intégralGray, Alfred, Michael Mezzino et Mark A. Pinsky. « Using ODE to Solve Second-Order Linear Differential Equations ». Dans Introduction to Ordinary Differential Equations with Mathematica®, 303–24. New York, NY : Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2242-2_10.
Texte intégralTang, Ying, Christophe Prieur et Antoine Girard. « Singular Perturbation Approach for Linear Coupled ODE-PDE Systems ». Dans Delays and Interconnections : Methodology, Algorithms and Applications, 3–17. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11554-8_1.
Texte intégralDey, Anindya. « Second Order Linear Ode : Solution Techniques & ; Qualitative Analysis ». Dans Differential Equations, 284–379. London : CRC Press, 2021. http://dx.doi.org/10.1201/9781003205982-6.
Texte intégralBotchev, Mike A. « Time-Exact Solution of Large Linear ODE Systems by Block Krylov Subspace Projections ». Dans Mathematics in Industry, 397–401. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05365-3_55.
Texte intégralCoster, C., et P. Habets. « Upper and Lower Solutions in the Theory of Ode Boundary Value Problems : Classical and Recent Results ». Dans Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations, 1–78. Vienna : Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-2680-6_1.
Texte intégralRyzhikov, Ivan, Eugene Semenkin et Shakhnaz Akhmedova. « Linear ODE Coefficients and Initial Condition Estimation with Co-operation of Biology Related Algorithms ». Dans Lecture Notes in Computer Science, 228–35. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41000-5_23.
Texte intégralActes de conférences sur le sujet "Linear ODE"
Huo, Guanying, Xin Jiang, Danlei Ye, Cheng Su, Zehong Lu, Bolun Wang et Zhiming Zheng. « Linear ODE Based Geometric Modelling for Compressor Blades ». Dans 2017 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017). Paris, France : Atlantis Press, 2017. http://dx.doi.org/10.2991/eame-17.2017.53.
Texte intégralSaba, David Bou, Federico Bribiesca-Argomedo, Michael Di Loreto et Damien Eberard. « Strictly Proper Control Design for the Stabilization of 2×2 Linear Hyperbolic ODE-PDE-ODE Systems ». Dans 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030248.
Texte intégralMelezhik, A. « Polynomial solutions of the third-order Fuchsian linear ODE ». Dans International Seminar Day on Diffraction Millennium Workshop. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/dd.2000.902361.
Texte intégralNajafi, Mahmoud, M. Ramezanizadeh, Donald Fincher et H. Massah. « Analysis of a non-linear parabolic ODE via decomposition ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913001.
Texte intégralKhatibi, Seyedhamidreza, Guilherme Ozorio Cassol et Stevan Dubljevic. « Linear model predictive control for a cascade ODE-PDE system ». Dans 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147269.
Texte intégralCristofaro, Andrea, et Francesco Ferrante. « Unknown Input Observer design for coupled PDE/ODE linear systems ». Dans 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9304374.
Texte intégralVenkataraman, P. « Solving Inverse ODE Using Bezier Functions ». Dans ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86331.
Texte intégralChaparova, Julia V., Eli P. Kalcheva et Miglena N. Koleva. « Numerical investigation of multiple periodic solutions of fourth-order semi-linear ODE ». Dans APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12) : Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766780.
Texte intégralSerban, Radu, et Alan C. Hindmarsh. « CVODES : The Sensitivity-Enabled ODE Solver in SUNDIALS ». Dans ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85597.
Texte intégralAuzinger, Winfried, Petro Pukach, Roksolyana Stolyarchuk et Myroslava Vovk. « Adaptive Numerics for Linear ODE Systems with Time-Dependent Data ; Application in Photovoltaics ». Dans 2020 IEEE XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, 2020. http://dx.doi.org/10.1109/memstech49584.2020.9109442.
Texte intégralRapports d'organisations sur le sujet "Linear ODE"
Vigil, M. G., et D. L. Marchi. Annular precision linear shaped charge flight termination system for the ODES program. Office of Scientific and Technical Information (OSTI), juin 1994. http://dx.doi.org/10.2172/10165513.
Texte intégralGardner C. J. Envelope Parameters for Linear Coupled Motion in Terms of the One-Turn Transfer Matrix. Office of Scientific and Technical Information (OSTI), juillet 1996. http://dx.doi.org/10.2172/1151345.
Texte intégralMathias, Lon J., et Ralph M. Bozen. Linear and Star-Branched Siloxy-Silane Polymers : One Pot A-B Polymerization and End-Capping. Fort Belvoir, VA : Defense Technical Information Center, mai 1992. http://dx.doi.org/10.21236/ada252195.
Texte intégralTygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Fort Belvoir, VA : Defense Technical Information Center, décembre 2005. http://dx.doi.org/10.21236/ada458901.
Texte intégralBaader, Franz, Anees ul Mehdi et Hongkai Liu. Integrate Action Formalisms into Linear Temporal Description Logics. Technische Universität Dresden, 2009. http://dx.doi.org/10.25368/2022.172.
Texte intégralHong Qin and Ronald C. Davidson. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field. Office of Scientific and Technical Information (OSTI), juillet 2011. http://dx.doi.org/10.2172/1029998.
Texte intégralZOTOVA, V. A., E. G. SKACHKOVA et T. D. FEOFANOVA. METHODOLOGICAL FEATURES OF APPLICATION OF SIMILARITY THEORY IN THE CALCULATION OF NON-STATIONARY ONE-DIMENSIONAL LINEAR THERMAL CONDUCTIVITY OF A ROD. Science and Innovation Center Publishing House, avril 2022. http://dx.doi.org/10.12731/2227-930x-2022-12-1-2-43-53.
Texte intégralR.P. Ewing et D.W. Meek. One Line or Two ? Perspectives on Piecewise Regression. Office of Scientific and Technical Information (OSTI), octobre 2006. http://dx.doi.org/10.2172/899336.
Texte intégralHanson, Hans, et Nicholas C. Kraus. T-Head Groin Advancements in One-Line Modeling (Genesis/T). Fort Belvoir, VA : Defense Technical Information Center, janvier 2002. http://dx.doi.org/10.21236/ada612482.
Texte intégralO'Connell, R. F. Quantum Transport, Noise and Non-Linear Dissipative Effects in One- and Two-Dimensional Systems and Associated Sub-Micron and Nanostructure Devices. Fort Belvoir, VA : Defense Technical Information Center, janvier 1992. http://dx.doi.org/10.21236/ada250895.
Texte intégral