Littérature scientifique sur le sujet « Liouville theorems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Liouville theorems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Liouville theorems"
Korniłowicz, Artur, Adam Naumowicz et Adam Grabowski. « All Liouville Numbers are Transcendental ». Formalized Mathematics 25, no 1 (28 mars 2017) : 49–54. http://dx.doi.org/10.1515/forma-2017-0004.
Texte intégralGlagoleva, R. Ya. « Phragmen-Liouville-type theorems and Liouville theorems for a linear parabolic equation ». Mathematical Notes of the Academy of Sciences of the USSR 37, no 1 (janvier 1985) : 67–70. http://dx.doi.org/10.1007/bf01652519.
Texte intégralTuna, Hüseyin, et Aytekin Eryilmaz. « Livšic’s theorem for q-Sturm—Liouville operators ». Studia Scientiarum Mathematicarum Hungarica 53, no 4 (décembre 2016) : 512–24. http://dx.doi.org/10.1556/012.2016.53.4.1348.
Texte intégralAraya, Ataklti, et Ahmed Mohammed. « On Cauchy–Liouville-type theorems ». Advances in Nonlinear Analysis 8, no 1 (24 août 2017) : 725–42. http://dx.doi.org/10.1515/anona-2017-0158.
Texte intégralBear, H. S. « Liouville theorems for heat functions ». Communications in Partial Differential Equations 11, no 14 (janvier 1986) : 1605–25. http://dx.doi.org/10.1080/03605308608820476.
Texte intégralJin, Zhiren. « Liouville theorems for harmonic maps ». Inventiones Mathematicae 108, no 1 (décembre 1992) : 1–10. http://dx.doi.org/10.1007/bf02100594.
Texte intégralAwadalla, Muath, Muthaiah Subramanian, Kinda Abuasbeh et Murugesan Manigandan. « On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions ». Symmetry 14, no 11 (29 octobre 2022) : 2273. http://dx.doi.org/10.3390/sym14112273.
Texte intégralChen, Wenxiong, et Leyun Wu. « Liouville Theorems for Fractional Parabolic Equations ». Advanced Nonlinear Studies 21, no 4 (14 octobre 2021) : 939–58. http://dx.doi.org/10.1515/ans-2021-2148.
Texte intégralGol'dshtein, Vladimir, et Alexander Ukhlov. « On the functional properties of weak (p,q)-quasiconformal homeomorphisms ». Ukrainian Mathematical Bulletin 16, no 3 (21 octobre 2019) : 329–44. http://dx.doi.org/10.37069/1810-3200-2019-16-3-2.
Texte intégralZhu, Meijun. « Liouville theorems on some indefinite equations ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 129, no 3 (1999) : 649–61. http://dx.doi.org/10.1017/s0308210500021569.
Texte intégralThèses sur le sujet "Liouville theorems"
Fazly, Mostafa. « m-Liouville theorems and regularity results for elliptic PDEs ». Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43751.
Texte intégralD'Ambrosio, Lorenzo. « Hardy Inequalities and Liouville Type Theorems Associated to Degenerate Operators ». Doctoral thesis, SISSA, 2002. http://hdl.handle.net/20.500.11767/4170.
Texte intégralMastrolia, P. « GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR DIFFUSION-TYPE OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS ». Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/153097.
Texte intégralCunha, Antonio Wilson Rodrigues da. « Sobre hipersuperfÃcies mÃnimas, aplicaÃÃes do princÃpio do mÃximo fraco e de teoremas tipo-Liouville ». Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15135.
Texte intégralConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
In this work we approach four research lines, where we began with the study of isometrically immersed hypersurfaces in a horoball. Next we studied Liouville type theorems in a complete Riemannian manifold for general operators. After we studied hypersurfaces f-minimal closed on a manifold with density, and nally we studied properly embedded minimal hypersurfaces with free boundary in a n-dimensional compact Riemannian manifold. Continuing, we obtain under a more general class operator than '-Laplacian, a Liouville type theorem for a complete Riemannian manifold, so that, prove a classication theorem for Killing graph of a foliation. Firstly, we are going to assume a weak maximum principle and that immersion is contained in a horoball, i.e., the set of bounded above Bussemann functions . We obtain an estimate for the highest quotient of r-curvatures. Moreover, under certain conditions on sectional curvature and assuming that the immersion is contained in a horoball, we forced the validity of the weak maximum principle and obtain the same estimates. Next, we establish a Choi-Wang type estimate for the rst eigenvalue of the weighter Laplacian on spaces with density in responding partially to Yau's conjecture for the rst eigenvalue weighter Laplacian for spaces with density, and moreover, we obtain an inequality Poincare type. With the estimates obtained, we establish an estimate of volume for a closed surface immersed in a space with density. Still following the study of spaces with density, we obtain a type Hientze-Karcher inequality for a compact manifold with nonempty boundary , so that, we obtain that if holds the equality than the manifold is isometric to a Euclidian ball. As consequence, we obtain under same conditions that if the f-mean curvature satisfy a bounded below than the manifold is isometric to a Euclidian ball. Finally, we obtain an estimate for the nonzero rst Steklov eigenvalue, where we are giving a answer partial to a conjecture by Fraser and Li. Moreover, as a consequence we establish an estimate for the total length of the boundary of the properly embedded minimal surfaces with free boundary in terms of its topology, thus, we proved the same when the surface is embedded in the Euclidean ball 3-dimensional.
Neste trabalho, abordamos quatro linhas de estudo, onde iniciamos com o estudo de hipersuperfcies isometricamente imersas sobre uma horobola. Em seguida estudamos Teoremas tipo Liouville para uma variedade Riemanniana completa em operadores mais gerais que o Laplaciano. Alem disso, estudamos hipersuperfcies f-mÃnimas fechadas em uma variedade com densidade e, por fim, estudamos hipersuperfÃcies mÃnimas com bordo livre, propriamente imersas em uma variedade Riemanniana compacta n-dimensional. Primeiramente, assumindo um princpio do maximo fraco e que a imersÃo està contida em uma horobola, i.e., um conjunto em que a funcÃo de Busemann à limitada superiormente, obtemos uma estimativa para o supremo do quociente das r-Ãsimas curvaturas. AlÃm disso, sob certas condiÃÃes sobre as curvaturas seccionais e assumindo que a imersÃo està contida em uma horobola, forÃamos a validade do princÃpio do mÃximo fraco e obtemos as mesmas estimativas. Prosseguindo, obtemos, para um operador mais geral que o '-Laplaciano, um teorema tipo-Liouville para uma variedade Riemanniana completa. Como aplicaÃÃo provamos um teorema de classificaÃÃo para grÃficos de Killing de uma folheaÃÃo. Em seguida, estabelecemos uma estimativa tipo Choi e Wang para o primeiro autovalor do f-Laplaciano em espaÃos com densidade, no sentido de responder parcialmente à conjectura de Yau para o primeiro autovalor do Laplaciano; alÃm disso, obtemos uma desigualdade tipo Poincarà para esse operador. Com a estimativa obtida, pudemos estabelecer uma estimativa de volume para uma superfÃcie fechada mergulhada em um espaÃo com densidade. Ainda seguindo o estudo de espaÃos com densidade, obtemos uma desigualdade tipo Heintze-Karcher para uma variedade compacta com bordo e verificamos que, se vale a igualdade, entÃo a variedade à isomÃtrica a uma bola Euclidiana. Como consequÃncia, obtemos que, nas mesmas condiÃÃes, e se a f-curvatura mÃdia satisfizer uma certa limitaÃÃo inferior, entÃo a variedade ainda à isometrica a uma bola Euclidiana. Finalmente, obtemos uma estimativa para o primeiro autovalor de Steklov, dando uma resposta parcial a uma conjectura devida a Fraser e Li. AlÃm disso, como consequÃncia, estabelecemos uma estimativa para o comprimento do bordo de uma superfÃcie mÃnima, compacta e propriamente megulhada com bordo livre em termos de sua topologia; assim, provamos o mesmo resultado quando a superfÃcie està mergulhada em uma bola Euclidiana 3-dimensional.
Afonso, Rafaela Ferreira. « Um estudo do comportamento dos zeros dos Polinômios de Gegenbauer ». Universidade Federal de Uberlândia, 2016. https://repositorio.ufu.br/handle/123456789/16825.
Texte intégralIn this dissertation, we study the Sturm Liouvile's theorems for the zeros of the solutions of linear differential equations of second order. These classical theorems are applied to analysis of the monotonicity of functions involving the zeros of classical orthogonal polynomials. in particular, Gegenbauer polynomials.
Neste trabalho estudamos os Teoremas de Sturm Liouville para zeros de soluções de equações diferenciais lineares de segunda ordem. Estes teoremas clássicos são aplicados para análise do crescimento e decrescimento de certas funções que envolvem os zeros de Polinômios Ortogonais Clássicos, como os Polinômios de Gegenbauer.
Mestre em Matemática
Tupia, Martín Dionisio Arteaga. « A função de três pontos nas teorias de Liouville e N = 1 super Liouville ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24092015-135051/.
Texte intégralIn this dissertation we present some basic features about Liouville and N=1 Super Liouville Theory, and focus in the computation of their three point functions. Additionally, we include an introduction to Conformal Field Theories (CFT) and Supersymmetry, which are the basic tools of the present research.
Bär, Christian. « Some properties of solutions to weakly hypoelliptic equations ». Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6006/.
Texte intégralNeves, Rui Gomes Mendona. « Conformal field theories on random surfaces and the non-critical string ». Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4750/.
Texte intégralLima, Jalman Alves de. « Teoremas Tipo Liouville e Desigualdades Tipo Harnack para Equações Elípticas Semilineares via Método Moving Spheres ». Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/7400.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we will do some applications of the Moving Spheres method, a variant of the method of Moving Planes, in order to obtain some Liouville-type theorems and some Harnack-type inequalities in Rn, as well as in the Euclidian half space Rn +. Our study focuses on, mostly, in the article written by Yan Yan Li and Lei Zhan [32], as well as some references of the same article. We concentrate in studying some properties of positive solutions of some semilinear elliptic partial differential equations with critical exponent and giving different proofs, improvements, and extensions of some previously established Liouville-type theorems and Harnack-type inequalities.
Neste trabalho, faremos algumas aplicações do método Moving Spheres, uma variante do método Moving Planes, na obtenção de alguns teoremas tipo Liouville e de algumas desigualdades tipo Harnack em Rn, bem como no semi-espaço euclidiano Rn +. Nosso estudo se concentra, marjoritariamente, no artigo do Yan Yan Li e Lei Zhang [32], bem como algumas referências do mesmo. Nos concentramos em estudar propriedades de soluções positivas de algumas equações diferenciais parciais elípticas semilineares com expoente crítico e dar provas diversificadas, refinamentos e extensões de alguns Teoremas tipo Liouville e desigualdades tipo Harnack já estabelecidos.
COLOMBO, GIULIO. « GLOBAL GRADIENT BOUNDS FOR SOLUTIONS OF PRESCRIBED MEAN CURVATURE EQUATIONS ON RIEMANNIAN MANIFOLDS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/813095.
Texte intégralLivres sur le sujet "Liouville theorems"
Kha, Minh, et Peter Kuchment. Liouville-Riemann-Roch Theorems on Abelian Coverings. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67428-1.
Texte intégralGwynne, Ewain. Percolation on uniform quadrangulations and SLE6 on √8/3-Liouville quantum gravity. Paris : Société mathématique de France, 2021.
Trouver le texte intégralKha, Minh, et Peter Kuchment. Liouville-Riemann-Roch Theorems on Abelian Coverings. Springer International Publishing AG, 2021.
Trouver le texte intégralMann, Peter. Hamilton-Jacobi Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0019.
Texte intégralHorii, Zene. Nonlinear Lattice Statistical Mechanics : The Liouville-Horii Theorem. BookSurge Publishing, 2007.
Trouver le texte intégralHorii, Zene. Nonlinear Lattice Statistical Mechanics : The Liouville-Horii Theorem. BookSurge Publishing, 2007.
Trouver le texte intégralMann, Peter. Liouville’s Theorem & ; Classical Statistical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0020.
Texte intégralMann, Peter. Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0027.
Texte intégralMann, Peter. Autonomous Geometrical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0022.
Texte intégralMann, Peter. Canonical & ; Gauge Transformations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0018.
Texte intégralChapitres de livres sur le sujet "Liouville theorems"
Wu, H. « Liouville theorems ». Dans Lecture Notes in Mathematics, 331–49. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078254.
Texte intégralFarina, Alberto. « I.6. Liouville Theorems ». Dans James Serrin. Selected Papers, 363–428. Basel : Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0845-3_6.
Texte intégralKha, Minh, et Peter Kuchment. « Specific Examples of Liouville-Riemann-Roch Theorems ». Dans Liouville-Riemann-Roch Theorems on Abelian Coverings, 55–66. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_4.
Texte intégralKha, Minh, et Peter Kuchment. « The Main Results ». Dans Liouville-Riemann-Roch Theorems on Abelian Coverings, 23–33. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_2.
Texte intégralKha, Minh, et Peter Kuchment. « Proofs of the Main Results ». Dans Liouville-Riemann-Roch Theorems on Abelian Coverings, 35–53. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_3.
Texte intégralKha, Minh, et Peter Kuchment. « Auxiliary Statements and Proofs of Technical Lemmas ». Dans Liouville-Riemann-Roch Theorems on Abelian Coverings, 67–84. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_5.
Texte intégralKha, Minh, et Peter Kuchment. « Preliminaries ». Dans Liouville-Riemann-Roch Theorems on Abelian Coverings, 1–21. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_1.
Texte intégralXin, Y. L. « Liouville type theorems and regularity of harmonic maps ». Dans Lecture Notes in Mathematics, 198–208. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077691.
Texte intégralHua, Bobo, Matthias Keller, Daniel Lenz et Marcel Schmidt. « On $$L^p$$ Liouville Theorems for Dirichlet Forms ». Dans Springer Proceedings in Mathematics & ; Statistics, 201–21. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4672-1_12.
Texte intégralSouplet, Philippe. « Liouville-Type Theorems for Nonlinear Elliptic and Parabolic Problems ». Dans 2018 MATRIX Annals, 303–25. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38230-8_21.
Texte intégralActes de conférences sur le sujet "Liouville theorems"
BREZIS, H., M. CHIPOT et Y. XIE. « SOME REMARKS ON LIOUVILLE TYPE THEOREMS ». Dans Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0003.
Texte intégralYU, CHII-HUEI. « APPLICATIONS OF TWO IMPORTANT THEOREMS OF FRACTIONAL CALCULUS ». Dans 2021 INTERNATIONAL CONFERENCE ON ADVANCED EDUCATION AND INFORMATION MANAGEMENT (AEIM 2021). Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/dtssehs/aeim2021/36005.
Texte intégralWinston, Roland. « Beating the optical Liouville theorem ». Dans Optics and Photonics for Advanced Energy Technology. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/energy.2009.wd8.
Texte intégralFrederico, Gastao S. F., et Delfim F. M. Torres. « Fractional Noether's theorem with classical and Riemann-Liouville derivatives ». Dans 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426162.
Texte intégralYAMANO, TAKUYA, et OSAMU IGUCHI. « ON CLASSICAL NO-CLONING THEOREM UNDER LIOUVILLE DYNAMICS AND DISTANCES ». Dans Summer School on Mathematical Aspects of Quantum Computing. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814487_0011.
Texte intégralJannson, Tomasz, et Joel Ng. « Nonimaging optics and the Liouville theorem in the XUV region ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thpo24.
Texte intégralOKAYASU, TAKASHI. « A LIOUVILLE THEOREM FOR HARMONIC MAPS WITH FINITE TOTAL N-ENERGY ». Dans Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0016.
Texte intégralKlimek, Malgorzata. « Fractional Sturm-Liouville Problem and 1D Space-Time Fractional Diffusion With Mixed Boundary Conditions ». Dans ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46808.
Texte intégralWinston, Roland, Chunhua Wang et Weiya Zhang. « Beating the optical Liouville theorem : How does geometrical optics know the second law of thermodynamics ? » Dans SPIE Optical Engineering + Applications, sous la direction de Roland Winston et Jeffrey M. Gordon. SPIE, 2009. http://dx.doi.org/10.1117/12.836029.
Texte intégralGonzález, Diego, et Sergio Davis. « Liouville’s theorem from the principle of maximum caliber in phase space ». Dans TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY : TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959044.
Texte intégralRapports d'organisations sur le sujet "Liouville theorems"
Moses, Joel, et Jamil Baddoura. A Dilogarithmic Extension of Liouville's Theorem on Integration in Finite Terms. Fort Belvoir, VA : Defense Technical Information Center, février 1988. http://dx.doi.org/10.21236/ada206681.
Texte intégral