Littérature scientifique sur le sujet « LITHIUM /PVDF »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « LITHIUM /PVDF ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "LITHIUM /PVDF"
Hu, Yinglu, Li Liu, Jingwei Zhao, Dechao Zhang, Jiadong Shen, Fangkun Li, Yan Yang et al. « Lithiophilic Quinone Lithium Salt Formed by Tetrafluoro-1,4-Benzoquinone Guides Uniform Lithium Deposition to Stabilize the Interface of Anode and PVDF-Based Solid Electrolytes ». Batteries 9, no 6 (12 juin 2023) : 322. http://dx.doi.org/10.3390/batteries9060322.
Texte intégralBarbosa, João, José Dias, Senentxu Lanceros-Méndez et Carlos Costa. « Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators ». Membranes 8, no 3 (19 juillet 2018) : 45. http://dx.doi.org/10.3390/membranes8030045.
Texte intégralKim, Min Ji, Chang Hee Lee, Mun Hui Jo et Soon Ki Jeong. « Electrochemical Decomposition of Poly(Vinylidene Fluoride) Binder for a Graphite Negative Electrode in Lithium-Ion Batteries ». Materials Science Forum 893 (mars 2017) : 127–31. http://dx.doi.org/10.4028/www.scientific.net/msf.893.127.
Texte intégralNikodimos, Yosef, Wei-Nien Su et Bing-Joe Hwang. « Lithium Dendrite Growth Suppression in Anode-Free Lithium Battery Using Bifunctional Electrospun Gel Polymer Electrolyte Membrane ». ECS Meeting Abstracts MA2023-01, no 6 (28 août 2023) : 998. http://dx.doi.org/10.1149/ma2023-016998mtgabs.
Texte intégralWang, Zhiqun, Shaokang Tian, Shangda Li, Lei Li, Yimei Yin et Zifeng Ma. « Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries ». RSC Advances 8, no 36 (2018) : 20025–31. http://dx.doi.org/10.1039/c8ra02122h.
Texte intégralCastillo, Julen, Adrián Robles-Fernandez, Rosalía Cid, José Antonio González-Marcos, Michel Armand, Daniel Carriazo, Heng Zhang et Alexander Santiago. « Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries ». Gels 9, no 4 (14 avril 2023) : 336. http://dx.doi.org/10.3390/gels9040336.
Texte intégralYang, Shan Shan, Xiong Liu, Jiang Nan Shen et Cong Jie Gao. « Comparison Study of PVDF-HMn2O4 and PES-HMn2O4 Membrane-Type Adsorbents for Lithium Adsorption/Desorption ». Applied Mechanics and Materials 633-634 (septembre 2014) : 517–20. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.517.
Texte intégralZhu, Shu Guang, et Wen Zhi He. « Removal of Organic Impurities in Lithium Cobalt Oxide from Spent Lithium Ion Batteries by Ultrasonic Irradiation ». Advanced Materials Research 864-867 (décembre 2013) : 1937–40. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.1937.
Texte intégralZhu, Pei, Jiadeng Zhu, Jun Zang, Chen Chen, Yao Lu, Mengjin Jiang, Chaoyi Yan, Mahmut Dirican, Ramakrishnan Kalai Selvan et Xiangwu Zhang. « A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries ». Journal of Materials Chemistry A 5, no 29 (2017) : 15096–104. http://dx.doi.org/10.1039/c7ta03301j.
Texte intégralKim, Gyuyoung, Jin-Hee Noh, Horim Lee, Jaehak Shin et Dongjin Lee. « Roll-to-Roll Gravure Coating of PVDF on a Battery Separator for the Enhancement of Thermal Stability ». Polymers 15, no 20 (16 octobre 2023) : 4108. http://dx.doi.org/10.3390/polym15204108.
Texte intégralThèses sur le sujet "LITHIUM /PVDF"
Eschbach, Julien. « Etude de nanocomposites hybrides en vue d'application dans les microsystèmes : de la synthèse des nanoparticules à l'élaboration de films minces piézoélectriques ». Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10104/document.
Texte intégralThis work aims at the elaboration of new hybrid nanocomposites with specific properties (piezoelectricity, non-linear optic). First, simple numeric modelings on mechanical properties of nanocomposites are presented, as well as simulation of deformation in nanocomposites with piezoelectric nanoparticles. Experimental results on tribological and mechanical (performed by Brillouin Spectroscopy) characterization of different nanocomposites are exposed. The influence of nanoparticles and their fonctionalization on the polymer matrix is discussed, and in particular the incidence on free volume in nanocomposites. Several piezoelectric nanoparticles synthesis processes have been also studied. In particular, a LiNbO3 nanoparticles synthesis protocol has been worked out. These nanoparticles were characterized by structural, chemical and imaging techniques. Finally, these works leads to the elaboration of PVDF-TrFE matrix thin films nanocomposites filled with commercial or produced in laboratory nanoparticles. The methods used to polarize the films are described. The piezoelectric properties of the nanocomposites have been measured. More particularly, PVDF-TrFE/Al2O3 nanocomposites thin films with a good piezoelectric response have been elaborated
Djian, Damien. « Etude et développement de séparateurs pour une nouvelle architecture de batteries Li-ion à charge rapide ». Phd thesis, Grenoble INPG, 2005. http://tel.archives-ouvertes.fr/tel-00011543.
Texte intégralAfin d'augmenter les capacités chargées par rapport aux séparateurs commerciaux, des membranes à squelette poly(fluorure de vinylidène) et poly(fluorure de vinylidène) co poly(hexafluoropropylène) ont été élaborées par inversion de phase en utilisant la méthodologie des plans d'expériences. Les processus de formation ont été explicités à partir de la thermodynamique des systèmes ternaires polymère/solvant/non-solvant. Les membranes obtenues ont permis de gagner 20% de capacité chargée en 3 minutes par rapport aux séparateurs commerciaux.
Enfin, les limitations en charge rapide dues aux séparateurs ont été étudiées et identifiées à l'aide d'un code de modélisation d'accumulateurs Li-ion.
Lu, ming-yi, et 呂明怡. « New polymer electrolyte for lithium battery base PVDF-HFP system ». Thesis, 2004. http://ndltd.ncl.edu.tw/handle/38861348742433695363.
Texte intégral國立中央大學
化學研究所
92
Abstract Rechargeable lithium ionic battery, compared to other secondary batteries, has the advantages of high working potential, high specific energy, wide applied temperature and no memory effect. However, in order to make a small light-weight batteries, a solid electrolyte was needed. Solid polymer electrolytes can be categorized into three types: dry-type polymer electrolyte, gel-type polymer electrolyte, and porous-type polymer electrolyte. In this studies, two systems were studied: polyaniline derivative was blended with PEO-LiClO4 electrolyte to increase the ionic conductivity of the dry-type polymer electrolyte and PVDF-HFP was mixed with polyalkoxy block copolymer such as P123 (Mw=5750) or F108 (Mw=14600) to form porous-type polymer membranes. The porous polymer membranes were then sock in LiClO4-EC/PC solution to form porous-type electrolytes. It was found that the ionic conductivity of dry-type polymer electrolyte is too low to be commercially viable. Therefore, the study is mainly focused on the porous-type polymer electrolyte. The porous membranes were prepared by both phase inversion and evaporating methods. They were then immersed in 1 M LiClO4 –EC/PC (1:1) solution to form porous polymer electrolytes. The pore structure and density of polymer membrane varied with the ratios of P123 (or F108). Low solution leakage, high conductivity polymer electrolyte was found when 30 ~ 50 wt% of P123 was blend with PVDF-HFP. The room temperature conductivity of these hybrid porous polymer electrolytes was up to 4 × 10-3 S/cm and they can stand up to 5.0 V. They have great potential to be applied in lithium ion batteries.
Wu, Ming-Long, et 吳明龍. « The Melioration of Solid Polymer Electrolyte(PVdF-HFP) in Lithium Batteries ». Thesis, 2000. http://ndltd.ncl.edu.tw/handle/35564862101413381408.
Texte intégral國立臺灣大學
化學工程學研究所
88
This study is focus on the melioration of PVdF-HFP(Poly (vinylidene defluoride)-co-Hexafluoropylene) polymer electrolyte. By adding some porous zeolite A、Y、ZSM-5、mordenite and MCM-41 in the electrolyte, the conductivity of it can be improved. Because the additives can adsorb a great quantity of plasticizer(EC/PC), which is a more valuable medium for the transmission of lithium ion in electrolyte. We synthesized the solid polymer electrolyte by solvent casting method. The additives in the electrolyte can be classified into three groups by the methods of pretreatment. The first group includes the fresh zeolite A、Y、ZSM-5、mordenite and MCM-41. The second contains zeolite A and Y after lithium ion exchanging procedure. The last kind of additives are these zeolites which are surface modified with CF3CH2CH2Si(OCH3)3. From a series of our study, we found that the additives zeolite A and Y can facilitate the conductivity of electrolyte more well than other additives. By the silane pre-treating procedure, the zeolites can even enhance the conducting ability of lithium ion in electrolyte, since the silane promote the dispersion of zeolites well in the organic polymer medium. At room temperature(25oC), the conductivity of the prototype electrolyte(without any additives) that we synthesized is 3.69×10-4(±0.20×10-4)S/cm. After surface modifying the fresh zeolite A by silane, the maximum conductivity we obtained is 1.20×10-3S/cm, about 3.5 times of the conductivity of the prototype electrolyte. Except electrolyte conductivity, we also investigated the mechanical strength of electrolyte by testing the relation between resistance loss and time, we found that the mechanical strength of electrolyte and the amount of additives are in direct proportion. By linear scanning voltage (LSV) testing, we can check the decomposing voltage of electrolytes. The decomposing voltage of the electrolytes that we synthesized is from 4.7V to 5.2V, which is above the average working voltage of lithium battery. That is, the electrolytes we synthesized can charge and discharge stably in the high working voltage environment of lithium battery.
Ren-JunLiu et 劉人儁. « Synthesis of PVdF-graft-PAN as high cycle life polymer electrolyte of lithium batteries ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/2646de.
Texte intégralChen, WeiLi, et 陳韋利. « Effect of Zeolite or SiO2 Additives on Solid Polymer Electrolyte (PVdF-HFP) in Lithium Batteries ». Thesis, 2002. http://ndltd.ncl.edu.tw/handle/06988224838107907351.
Texte intégral國立臺灣大學
化學工程學研究所
90
This study is focus on the effect of zeolite or SiO2 additives on PVdF-HFP (poly(vinylidene fluoride)-co-hexafluoropropylene). polymer electrolyte. According to Wu’s thesis, adding some porous zeolite A、Y、ZSM-5、mordenite and MCM-41 in the electrolyte, the conductivity of it can be improved. This is because the additives can adsorb a great quantity of plasticizer(EC/PC), which is a more valuable medium for the transition of lithium ion in the electrolyte. From the characterization of zeolites, such as the adsorption of plasticizer, thermal gravimetry analysis, particle size measurement, we found that a good additives should be small with uniform particle size distribution, should contain trace aluminum, and it is not necessary to be porous. In addition, some organic compound on the additives can increase the adsorption of EC/PC. However, the additives do not help the conductivity significantly when the electrolyte is rich in plasticizer (EC/PC). In this research, solvent casting method was used for making the solid polymer electrolyte. The additives studied can be classified into three groups. The first group includes the fresh zeolite A、Y、ZSM-5、mordenite. The second contains SiO2 (0.040mm-0.063mm). The last is TEOS which is used for the synthesis of small SiO2 particles in the film. It was found that the addition of SiO2 did not improve the conductivity. For TEOS, the conductivity of electrolyte seems increased. However, the films were bumpy and fragile, and did not have good mechanical strength.
Si-XianWu et 吳思賢. « Studies on plasma modification of carbon nanotube and PVDF binder for lithium ion battery cathode ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/78964069137111649920.
Texte intégral國立成功大學
化學工程學系碩博士班
101
In this study, we used the plasma-treated MWNT in the fabrication of lithium ion batteries cathode. After the plasma modification, entanglement in MWNT caused by MWNT’s van der Waals force could be improved and hence enhanced dispersal in solvent. At the same time, we used the plasma treatment method to prepare the binder polyvinylidene difluoride (PVDF) grafted with maleic anhydride (MA). PVDF would change the surface polarity and it could avoid MWNT from flaking off the cathode. First, we prepared the Multi-walled carbon nanotubes that have been treated by the plasma then grafted MA and methyl methacrylate (MMA) on the surface of the MWNT. Also, PVDF grafted MA by plasma modification was also prepared using similar method. There are two approaches to enhance electronic conductibility of the cathode. We dispersed CNT-MMA in NMP and well mixed with the binder PVDF-MA. The electronic conductibility of binder can be increased by CNT-MMA. Furthermore, we disperse both CNT-MA and LiFePO4 in NMP. With the electronic conductivity contributed by CNT-MA, electronic conductivity of LiFePO4 also increases. After mixing the two slurries, the cathode materials were coated onto aluminum foil followed by subsequent drying at a vacuum oven. The dried electrode was compressed by a roller at room temperature to produce a smooth and compact film structure. When the amount of CNT-MA reached 4.7%, the resistance of the cathode electrode measured by four-point probe was 0.27Ω. With well dispersed CNT, the measuring resistance on the electrode was close throughout the entire sample. Obtaining from the coin-cell testing, the first discharge capacity was 148.8mAh/g at 0.1C rate and 116mAh/g at 1C rate. And there was still 96.3% discharge capacity after the long-term stability test. To overcome the charge-transfer resistance problem in LiFePO4, we used wet ball-mill technique to decrease the particle size of LiFePO4. Thus, we could obtain the LiFePO4 with particle size of 233 nm. Using the same fabrication conditions, the cathode electrode resistance measured was about 0.3Ω. Comparing with aforementioned cathodes, the first discharge capacity enhanced to 153.9mAh/g at 0.1C rate, 120.6mAh/g at 1C rate and 103mAh/g at 2C rate, respectively. After the long-term stability test, there was still 98.4% discharge capacity. Finally, we used unmodified MWNT to replace plasma-treated MWNT. As shown from the result, we observed the promotion of plasma obviously.
江冠廷. « Influence of Pt Nanoparticles and Fraction of PVdF on the Electrochemical Performance of Lithium Air Battery ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/73559759936387099862.
Texte intégralLiao, Bo-Hao, et 廖柏豪. « Fabrication and analysis of near-field electrospinning PVDF fibers with sol-gel coating for lithium ion battery separator ». Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2d259h.
Texte intégralLai, Bo-Yu, et 賴柏宇. « Lithium Sulfur Battery Materials Development and Electrochemical Analysis – Effects of PVDF Based Gel Polymer Electrolyte on Dendrite Formation and Carbon Based Protection Layer on Lithium Sulfur Electrodes ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/g7qbwe.
Texte intégral國立臺灣大學
生物產業機電工程學研究所
103
This research is dedicating to one of the most promising lithium metal battery, lithium sulfur battery. The development of this kind of lithium metal battery is facing some challenges recently, which can split to two parts. One of them is dendrite growth on the lithium metal negative electrode, which may cause some safety issue, including short-circuited and energy capacity decay. We designed a symmetric cell to in-situ observe dendrite growth when applying a constant current. In order to study the relationship between mechanical strength and dendrite growth, we fabricated the cell with different gel polymer electrolyte with different Young’s modulus. We found that when using the gel polymer electrolyte which Young’s modulus is 0.05548MPa and the current density is 0.1mA/cm2, dendrite would not grow in the first 3000 minutes. We also found that the mechanism of oxidation of lithium metal is very similar to pitting corrosion. When using the electrolyte which diffusivity is lower, the phenomena of pitting corrosion is less apparent. The other part is the dissolution of sulfur electrode. Due to its physic properties, the lithium sulfide would gradually dissolve into the electrolyte. This may cause some energy capacity decay. We add an additional layer into the cell to be a protect layer. This layer could efficiently adsorb the lithium sulfide that dissolved into the solution, reducing the decay rate of the cell. We also mixed MWCNT with carbonized lignin, and found that 50% 900℃ carbonized lignin MWCNT film could make the cell remain 1000mAh/g S capacity after 60 cycles(0.1C).
Chapitres de livres sur le sujet "LITHIUM /PVDF"
Jishnu, N. S., S. K. Vineeth, Akhila Das, Neethu T. M. Balakrishnan, Anjumole P. Thomas, M. J. Jabeen Fatima, Jou-Hyeon Ahn et Raghavan Prasanth. « Electrospun PVdF and PVdF-co-HFP-Based Blend Polymer Electrolytes for Lithium Ion Batteries ». Dans Electrospinning for Advanced Energy Storage Applications, 201–34. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_8.
Texte intégralJishnu, N. S., Neethu T. M. Balakrishnan, Akhila Das, Jarin D. Joyner, Jou-Hyeon Ahn, Fatima M. J. Jabeen et Prasanth Raghavan. « Poly(Vinylidene Fluoride) (PVdF)-Based Polymer Electrolytes for Lithium-Ion Batteries ». Dans Polymer Electrolytes for Energy Storage Devices, 111–32. First edition | Boca Raton : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-5.
Texte intégralDas, Akhila, Neethu T. M. Balakrishnan, N. S. Jishnu, Jarin D. Joyner, Jou-Hyeon Ahn, Fatima M. J. Jabeen et Prasanth Raghavan. « Poly(Vinylidene Fluoride- co-Hexafluoropropylene) (PVdF-co-HFP)-Based Gel Polymer Electrolyte for Lithium-Ion Batteries ». Dans Polymer Electrolytes for Energy Storage Devices, 133–48. First edition | Boca Raton : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-6.
Texte intégralYang, Chun-Chen, et Zuo-Yu Lian. « Electrochemical Performance of LiNi1/3 Co1/3 Mn1/3 O2 Lithium Polymer Battery Based on PVDF-HFP/m-SBA15 Composite Polymer Membranes ». Dans Ceramic Transactions Series, 181–202. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771327.ch19.
Texte intégralKulova, Tatiana, Alexander Mironenko, Alexander Rudy et Alexander Skundin. « PVD Methods for Manufacturing All-Solid-State Thin-Film Lithium-Ion Batteries ». Dans All Solid State Thin-Film Lithium-Ion Batteries, 74–88. First edition. | Boca Raton : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9780429023736-3.
Texte intégralGuan, Hongjian, Ruilin Yang, Yi Tao, Huilin Tai, Yuanjie Su, Yang Wang et Weizhi Li. « Flexible Humidity Sensor Based on Polyvinylidene Fluoride ». Dans Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde221203.
Texte intégralSanchez, Jean-Yves, Fannie Alloin et Johanna Saunier. « PVdF-based polymers for lithium batteries ». Dans Fluorinated Materials for Energy Conversion, 305–33. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044472-7/50042-4.
Texte intégralActes de conférences sur le sujet "LITHIUM /PVDF"
Ren, Xumei, Hui Gu, Feng Wu et Xuejie Huang. « Electric Properties of PVDF-HFP Microporous Membrane For Lithium Ion Battery ». Dans Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0064.
Texte intégralZhu, Gaolong, Xiaopeng Jing et Weidong He. « Composite MnCO3/PVDF-HFP separator towards high-performance lithium-ion batteries ». Dans 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Paris, France : Atlantis Press, 2018. http://dx.doi.org/10.2991/iceesd-18.2018.330.
Texte intégralMajor, K., G. Brisard et J. Veilleux. « Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma ». Dans ITSC2015, sous la direction de A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen et C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Texte intégralSathyanathan, T., C. Revathy et C. Pugazhendhi Sugumaran. « Analysis of Liquid, PVDF-Polymer and Polymer-Nanocomposite electrolyte for Lithium Battery ». Dans 2019 7th International Electrical Engineering Congress (iEECON). IEEE, 2019. http://dx.doi.org/10.1109/ieecon45304.2019.8938834.
Texte intégralArro, Christian, Mohammad Ibrahim Ahmad et Nasr Bensalah. « Investigation on the effect of LiTFSI salt on PVDF-based Solid Polymer Electrolyte Membranes for Lithium-Ion Batteries ». Dans Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0042.
Texte intégralVickraman, P., A. Pandiraj, Alka B. Garg, R. Mittal et R. Mukhopadhyay. « Provskite Structure Based Filler Impregnated Pvdf—Hfp Micro Composites For Lithium Ion Batteries ». Dans SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606222.
Texte intégralLiu, Wei, Ryan Milcarek, Kang Wang et Jeongmin Ahn. « Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries ». Dans ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Texte intégralPradeepa, P., S. Edwinraj, G. Sowmya, J. Kalaiselvimary, K. Selvakumar et M. Ramesh Prabhu. « Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications ». Dans INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015) : Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946448.
Texte intégralMICHAEL, M. S., et S. R. S. PRABAHARAN. « AMBIENT TEMPERATURE HYBRID POLYMER ELECTROLYTE BASED ON PVK + PVDF-HFP(CO-POLYMER) FOR LITHIUM BATTERIES ». Dans Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0026.
Texte intégralVickraman, P., R. Jayaraman et K. Purushothaman. « Blending effect of poly (ethyl methacrylate) on lithium bis(perfluoroethanesulfonyl) imide-ferroceramic PVdF-HFP composite ». Dans PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE : RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810080.
Texte intégralRapports d'organisations sur le sujet "LITHIUM /PVDF"
Greenbaum, Steven G. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF. Fort Belvoir, VA : Defense Technical Information Center, février 1998. http://dx.doi.org/10.21236/ada344887.
Texte intégral