Articles de revues sur le sujet « Low Thermal Budget »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Low Thermal Budget ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Sharangpani, R., K. C. Cherukuri, and R. Singh. "Low thermal budget processing of organic dielectrics." IEEE Transactions on Electron Devices 43, no. 7 (1996): 1168–70. http://dx.doi.org/10.1109/16.502430.
Texte intégralPradeepkumar, Maurya Sandeep, Harsh Vardhan Singh, Sooraj Kumar, Joysurya Basu, and Md Imteyaz Ahmad. "Low thermal budget processing of CdS thin films." Materials Letters 280 (December 2020): 128560. http://dx.doi.org/10.1016/j.matlet.2020.128560.
Texte intégralBhat, N., A. W. Wang, and K. C. Saraswat. "Rapid thermal anneal of gate oxides for low thermal budget TFT's." IEEE Transactions on Electron Devices 46, no. 1 (1999): 63–69. http://dx.doi.org/10.1109/16.737442.
Texte intégralMichael, Aron, and Chee Yee Kwok. "Evaporated Thick Polysilicon Film With Low Stress and Low Thermal Budget." Journal of Microelectromechanical Systems 22, no. 4 (2013): 825–27. http://dx.doi.org/10.1109/jmems.2013.2248129.
Texte intégralKuo, Yue. "Pulsed Rapid Thermal Annealing as a Low Thermal Budget Semiconductor Fabrication Process." ECS Meeting Abstracts MA2023-01, no. 29 (2023): 1776. http://dx.doi.org/10.1149/ma2023-01291776mtgabs.
Texte intégralMazzamuto, Fulvio, Sebastien Halty, Hideaki Tanimura, and Yoshihiro Mori. "Low Thermal Budget Ohmic Contact Formation by Laser Anneal." Materials Science Forum 858 (May 2016): 565–68. http://dx.doi.org/10.4028/www.scientific.net/msf.858.565.
Texte intégralKönig, U., and J. Hersener. "Needs of Low Thermal Budget Processing in SiGe Technology." Solid State Phenomena 47-48 (July 1995): 17–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.47-48.17.
Texte intégralKang, Il-Suk, Sung-Hun Yu, Hyun-Sang Seo, et al. "Low Thermal Budget Crystallization of Amorphous Silicon by Nanoclusters." Electrochemical and Solid-State Letters 12, no. 9 (2009): H319. http://dx.doi.org/10.1149/1.3152594.
Texte intégralAbbadie, A., J. M. Hartmann, P. Holliger, M. N. Séméria, P. Besson, and P. Gentile. "Low thermal budget surface preparation of Si and SiGe." Applied Surface Science 225, no. 1-4 (2004): 256–66. http://dx.doi.org/10.1016/j.apsusc.2003.10.018.
Texte intégralSimon, Daniel K., Thomas Henke, Paul M. Jordan, et al. "Low-thermal budget flash light annealing for Al2O3surface passivation." physica status solidi (RRL) - Rapid Research Letters 9, no. 11 (2015): 631–35. http://dx.doi.org/10.1002/pssr.201510306.
Texte intégralNoh, Joo Hyon, Pooran C. Joshi, Teja Kuruganti, and Philip D. Rack. "Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors." IEEE Journal of the Electron Devices Society 3, no. 3 (2015): 297–301. http://dx.doi.org/10.1109/jeds.2014.2376411.
Texte intégralTestard, O. A. "Thermal contacts through mechanical moving parts in low thermal budget optical cryogenic assemblies." Cryogenics 27, no. 1 (1987): 20–22. http://dx.doi.org/10.1016/0011-2275(87)90100-7.
Texte intégralSoubane, Driss, and Nathaniel J. Quitoriano. "Photoluminescence from low thermal budget silicon nano-crystals in silica." Nanotechnology 26, no. 29 (2015): 295201. http://dx.doi.org/10.1088/0957-4484/26/29/295201.
Texte intégralLiu, Gang, and S. J. Fonash. "Low Thermal Budget Poly-Si Thin Film Transistors on Glass." Japanese Journal of Applied Physics 30, Part 2, No. 2B (1991): L269—L271. http://dx.doi.org/10.1143/jjap.30.l269.
Texte intégralFair, R. B. "Low-thermal-budget process modeling with the PREDICT computer program." IEEE Transactions on Electron Devices 35, no. 3 (1988): 285–93. http://dx.doi.org/10.1109/16.2452.
Texte intégralRajendran, Bipin, Rohit S. Shenoy, Daniel J. Witte, et al. "Low Thermal Budget Processing for Sequential 3-D IC Fabrication." IEEE Transactions on Electron Devices 54, no. 4 (2007): 707–14. http://dx.doi.org/10.1109/ted.2007.891300.
Texte intégralHsiao-Yi Lin, Chun-Yen Chang, Tan Fu Lei, et al. "Low-temperature and low thermal budget fabrication of polycrystalline silicon thin-film transistors." IEEE Electron Device Letters 17, no. 11 (1996): 503–5. http://dx.doi.org/10.1109/55.541762.
Texte intégralSong, Kay, Zia Karim, Xinxuan Tan, et al. "(Invited) Improvements in Thermal Budget and Film Properties Using Low Pressure Cure Technology for Advanced 3D Integration Packaging." ECS Meeting Abstracts MA2023-01, no. 29 (2023): 1788. http://dx.doi.org/10.1149/ma2023-01291788mtgabs.
Texte intégralMazzamuto, Fulvio, Zeinab Chehadi, Fabien Roze, et al. "Low Resistivity Aluminum Doped Layers Formed Using High Dose High Temperature Implants and Laser Annealing." Solid State Phenomena 359 (August 22, 2024): 21–28. http://dx.doi.org/10.4028/p-7t0wv7.
Texte intégralJurichich, Steve, Tsu-Jae King, Krishna Saraswat, and John Mehlhaff. "Low Thermal Budget Polycrystalline Silicon-Germanium Thin-Film Transistors Fabricated by Rapid Thermal Annealing." Japanese Journal of Applied Physics 33, Part 2, No. 8B (1994): L1139—L1141. http://dx.doi.org/10.1143/jjap.33.l1139.
Texte intégralLackner, Georg, Florent Domine, Daniel F. Nadeau, et al. "On the energy budget of a low-Arctic snowpack." Cryosphere 16, no. 1 (2022): 127–42. http://dx.doi.org/10.5194/tc-16-127-2022.
Texte intégralSerrazina, Ricardo, Alexander Tkach, Luis Pereira, Ana M. O. R. Senos, and Paula M. Vilarinho. "Flash Sintered Potassium Sodium Niobate: High-Performance Piezoelectric Ceramics at Low Thermal Budget Processing." Materials 15, no. 19 (2022): 6603. http://dx.doi.org/10.3390/ma15196603.
Texte intégralKim, Hyo Jeong, Yonghwan An, Yong Chan Jung, et al. "Low‐Thermal‐Budget Fluorite‐Structure Ferroelectrics for Future Electronic Device Applications." physica status solidi (RRL) – Rapid Research Letters 15, no. 5 (2021): 2100028. http://dx.doi.org/10.1002/pssr.202100028.
Texte intégralKim, Hyo Jeong, Yonghwan An, Yong Chan Jung, et al. "Low‐Thermal‐Budget Fluorite‐Structure Ferroelectrics for Future Electronic Device Applications." physica status solidi (RRL) – Rapid Research Letters 15, no. 5 (2021): 2170020. http://dx.doi.org/10.1002/pssr.202170020.
Texte intégralCelik, S. Muhsin, and Mehmet C. Öztürk. "Low Thermal Budget In Situ Surface Cleaning for Selective Silicon Epitaxy." Journal of The Electrochemical Society 145, no. 10 (1998): 3602–9. http://dx.doi.org/10.1149/1.1838849.
Texte intégralOsmond, J., G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel. "Ultralow dark current Ge/Si(100) photodiodes with low thermal budget." Applied Physics Letters 94, no. 20 (2009): 201106. http://dx.doi.org/10.1063/1.3125252.
Texte intégralP, Ashok, Yogesh Singh Chauhan, and Amit Verma. "Vanadium dioxide thin films synthesized using low thermal budget atmospheric oxidation." Thin Solid Films 706 (July 2020): 138003. http://dx.doi.org/10.1016/j.tsf.2020.138003.
Texte intégralOsburn, C. M. "Formation of silicided, ultra-shallow junctions using low thermal budget processing." Journal of Electronic Materials 19, no. 1 (1990): 67–88. http://dx.doi.org/10.1007/bf02655553.
Texte intégralInoue, N., T. Nakura, and Y. Hayashi. "Low thermal-budget process of sputtered-PZT capacitor over multilevel metallization." IEEE Transactions on Electron Devices 50, no. 10 (2003): 2081–87. http://dx.doi.org/10.1109/ted.2003.816548.
Texte intégralChang, Wen Hsin, Hsien-Wen Wan, Yi-Ting Cheng, et al. "Low thermal budget epitaxial lift off (ELO) for Ge (111)-on-insulator structure." Japanese Journal of Applied Physics 61, SC (2022): SC1024. http://dx.doi.org/10.35848/1347-4065/ac3fca.
Texte intégralHieronymus, Magnus, and Jeffrey R. Carpenter. "Energy and Variance Budgets of a Diffusive Staircase with Implications for Heat Flux Scaling." Journal of Physical Oceanography 46, no. 8 (2016): 2553–69. http://dx.doi.org/10.1175/jpo-d-15-0155.1.
Texte intégralHuet, Karim, Toshiyuki Tabata, Joris Aubin, et al. "(Invited) Laser Thermal Annealing for Low Thermal Budget Applications: From Contact Formation to Material Modification." ECS Transactions 89, no. 3 (2019): 137–53. http://dx.doi.org/10.1149/08903.0137ecst.
Texte intégralDing, Dong, Yunya Zhang, Wei Wu, Dongchang Chen, Meilin Liu, and Ting He. "A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane." Energy & Environmental Science 11, no. 7 (2018): 1710–16. http://dx.doi.org/10.1039/c8ee00645h.
Texte intégralCha, Jun‐Hwe, Dong‐Ha Kim, Cheolmin Park, et al. "Low‐Thermal‐Budget Doping: Low‐Thermal‐Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boron‐Doped Reduced Graphene Oxide (Adv. Sci. 7/2020)." Advanced Science 7, no. 7 (2020): 2070039. http://dx.doi.org/10.1002/advs.202070039.
Texte intégralJao, Meng-Huan, Chien-Chen Cheng, Chun-Fu Lu, Kai-Chi Hsiao, and Wei-Fang Su. "Low temperature and rapid formation of high quality metal oxide thin film via a hydroxide-assisted energy conservation strategy." Journal of Materials Chemistry C 6, no. 37 (2018): 9941–49. http://dx.doi.org/10.1039/c8tc03544j.
Texte intégralLucovsky, Gerald, David R. Lee, Sunil V. Hattangady, et al. "Monolayer Nitrogen-Atom Distributions in Ultrathin Gate Dielectrics by Low-Temperature Low-Thermal-Budget Processing." Japanese Journal of Applied Physics 34, Part 1, No. 12B (1995): 6827–37. http://dx.doi.org/10.1143/jjap.34.6827.
Texte intégralProwse, T. D., and P. Marsh. "Thermal budget of river ice covers during breakup." Canadian Journal of Civil Engineering 16, no. 1 (1989): 62–71. http://dx.doi.org/10.1139/l89-008.
Texte intégralSaha, S. K., R. S. Howell, and M. K. Hatalis. "Silicidation reactions with Co–Ni bilayers for low thermal budget microelectronic applications." Thin Solid Films 347, no. 1-2 (1999): 278–83. http://dx.doi.org/10.1016/s0040-6090(99)00013-9.
Texte intégralLim, D. G., B. S. Jang, S. I. Moon, C. Y. Won, and J. Yi. "Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process." Solid-State Electronics 45, no. 7 (2001): 1159–63. http://dx.doi.org/10.1016/s0038-1101(01)00042-9.
Texte intégralRappich, J. "Anodic oxidation as a low thermal budget process for passivation of SiGe." Solid-State Electronics 45, no. 8 (2001): 1465–70. http://dx.doi.org/10.1016/s0038-1101(01)00056-9.
Texte intégralChou, Tzu-Ting, Rui-Wen Song, Hao Chen, and Jenq-Gong Duh. "Low thermal budget bonding for 3D-package by collapse-free hybrid solder." Materials Chemistry and Physics 238 (December 2019): 121887. http://dx.doi.org/10.1016/j.matchemphys.2019.121887.
Texte intégralBrabant, Paul, Jianqing Wen, Joe Italiano, Trevan Landin, Nyles Cody, and Lee Haen. "Achieving a SiGe HBT epitaxial emitter with novel low thermal budget technique." Applied Surface Science 224, no. 1-4 (2004): 347–49. http://dx.doi.org/10.1016/j.apsusc.2003.08.105.
Texte intégralBietti, S., C. Somaschini, S. Sanguinetti, et al. "Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates." Journal of Physics: Conference Series 245 (September 1, 2010): 012078. http://dx.doi.org/10.1088/1742-6596/245/1/012078.
Texte intégralPark, Jeewon, Wansu Jang, and Changhwan Shin. "Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-K/Metal-Gate Device." Micromachines 12, no. 8 (2021): 886. http://dx.doi.org/10.3390/mi12080886.
Texte intégralQin, Shu. "High quality low thermal budget low cost SiO2 film fabricated by O2 plasma immersion ion implantation." Thin Solid Films 756 (August 2022): 139385. http://dx.doi.org/10.1016/j.tsf.2022.139385.
Texte intégralKUUSK, Kalle, Targo KALAMEES, Siim LINK, Simo ILOMETS, and Alo MIKOLA. "CASE-STUDY ANALYSIS OF CONCRETE LARGE-PANEL APARTMENT BUILDING AT PRE- AND POST LOW-BUDGET ENERGY-RENOVATION." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 23, no. 1 (2016): 67–75. http://dx.doi.org/10.3846/13923730.2014.975741.
Texte intégralLoo, Roger, Andriy Hikavyy, Frederik E. Leys, et al. "Low Temperature Pre-Epi Treatment: Critical Parameters to Control Interface Contamination." Solid State Phenomena 145-146 (January 2009): 177–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.145-146.177.
Texte intégralGlück, M., J. Hersener, H. G. Umbach, J. Rappich, and J. Stein. "Implementation of Low Thermal Budget Techniques to Si and SiGe MOSFET Device Processing." Solid State Phenomena 57-58 (July 1997): 413–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.57-58.413.
Texte intégralLiu, Y., L. M. Kyaw, M. K. Bera, et al. "Low Thermal Budget Au-Free Hf-Based Ohmic Contacts on InAlN/GaN Heterostructures." ECS Transactions 61, no. 4 (2014): 319–27. http://dx.doi.org/10.1149/06104.0319ecst.
Texte intégralAnderson, Evan M., DeAnna M. Campbell, Leon N. Maurer, et al. "Low thermal budget high-k/metal surface gate for buried donor-based devices." Journal of Physics: Materials 3, no. 3 (2020): 035002. http://dx.doi.org/10.1088/2515-7639/ab953b.
Texte intégral