Littérature scientifique sur le sujet « Machine Learning, Artificial Intelligence, Regularization Methods »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Machine Learning, Artificial Intelligence, Regularization Methods ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
Abidine, M’hamed Bilal, et Belkacem Fergani. « Activity recognition from smartphone data using weighted learning methods ». Intelligenza Artificiale 15, no 1 (28 juillet 2021) : 1–15. http://dx.doi.org/10.3233/ia-200059.
Texte intégralFokkema, Marjolein, Dragos Iliescu, Samuel Greiff et Matthias Ziegler. « Machine Learning and Prediction in Psychological Assessment ». European Journal of Psychological Assessment 38, no 3 (mai 2022) : 165–75. http://dx.doi.org/10.1027/1015-5759/a000714.
Texte intégralКабанихин, С. И. « Inverse Problems and Artificial Intelligence ». Успехи кибернетики / Russian Journal of Cybernetics, no 3 (11 octobre 2021) : 33–43. http://dx.doi.org/10.51790/2712-9942-2021-2-3-5.
Texte intégralMohammad-Djafari, Ali. « Interaction between Model Based Signal and Image Processing, Machine Learning and Artificial Intelligence ». Proceedings 33, no 1 (28 novembre 2019) : 16. http://dx.doi.org/10.3390/proceedings2019033016.
Texte intégralDif, Nassima, et Zakaria Elberrichi. « Efficient Regularization Framework for Histopathological Image Classification Using Convolutional Neural Networks. » International Journal of Cognitive Informatics and Natural Intelligence 14, no 4 (octobre 2020) : 62–81. http://dx.doi.org/10.4018/ijcini.2020100104.
Texte intégralLuo, Yong, Liancheng Yin, Wenchao Bai et Keming Mao. « An Appraisal of Incremental Learning Methods ». Entropy 22, no 11 (22 octobre 2020) : 1190. http://dx.doi.org/10.3390/e22111190.
Texte intégralAlcin, Omer F., Abdulkadir Sengur, Jiang Qian et Melih C. Ince. « OMP-ELM : Orthogonal Matching Pursuit-Based Extreme Learning Machine for Regression ». Journal of Intelligent Systems 24, no 1 (1 mars 2015) : 135–43. http://dx.doi.org/10.1515/jisys-2014-0095.
Texte intégralHomayouni, Haleh, et Eghbal G. Mansoori. « Manifold regularization ensemble clustering with many objectives using unsupervised extreme learning machines ». Intelligent Data Analysis 25, no 4 (9 juillet 2021) : 847–62. http://dx.doi.org/10.3233/ida-205362.
Texte intégralNayef, Bahera Hani, Siti Norul Huda Sheikh Abdullah, Rossilawati Sulaiman et Zaid Abdi Al Kareem Alyasseri. « VARIANTS OF NEURAL NETWORKS : A REVIEW ». Malaysian Journal of Computer Science 35, no 2 (29 avril 2022) : 158–78. http://dx.doi.org/10.22452/mjcs.vol35no2.5.
Texte intégralCai, Yingfeng, Youguo He, Hai Wang, Xiaoqiang Sun, Long Chen et Haobin Jiang. « Pedestrian detection algorithm in traffic scene based on weakly supervised hierarchical deep model ». International Journal of Advanced Robotic Systems 14, no 1 (14 février 2016) : 172988141769231. http://dx.doi.org/10.1177/1729881417692311.
Texte intégralThèses sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
ROSSI, ALESSANDRO. « Regularization and Learning in the temporal domain ». Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1006818.
Texte intégralLu, Yibiao. « Statistical methods with application to machine learning and artificial intelligence ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44730.
Texte intégralGiuliani, Luca. « Extending the Moving Targets Method for Injecting Constraints in Machine Learning ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Texte intégralLe, Truc Duc. « Machine Learning Methods for 3D Object Classification and Segmentation ». Thesis, University of Missouri - Columbia, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13877153.
Texte intégralObject understanding is a fundamental problem in computer vision and it has been extensively researched in recent years thanks to the availability of powerful GPUs and labelled data, especially in the context of images. However, 3D object understanding is still not on par with its 2D domain and deep learning for 3D has not been fully explored yet. In this dissertation, I work on two approaches, both of which advances the state-of-the-art results in 3D classification and segmentation.
The first approach, called MVRNN, is based multi-view paradigm. In contrast to MVCNN which does not generate consistent result across different views, by treating the multi-view images as a temporal sequence, our MVRNN correlates the features and generates coherent segmentation across different views. MVRNN demonstrated state-of-the-art performance on the Princeton Segmentation Benchmark dataset.
The second approach, called PointGrid, is a hybrid method which combines points and regular grid structure. 3D points can retain fine details but irregular, which is challenge for deep learning methods. Volumetric grid is simple and has regular structure, but does not scale well with data resolution. Our PointGrid, which is simple, allows the fine details to be consumed by normal convolutions under a coarser resolution grid. PointGrid achieved state-of-the-art performance on ModelNet40 and ShapeNet datasets in 3D classification and object part segmentation.
Michael, Christoph Cornelius. « General methods for analyzing machine learning sample complexity ». W&M ScholarWorks, 1994. https://scholarworks.wm.edu/etd/1539623860.
Texte intégralGao, Xi. « Graph-based Regularization in Machine Learning : Discovering Driver Modules in Biological Networks ». VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3942.
Texte intégralPuthiya, Parambath Shameem Ahamed. « New methods for multi-objective learning ». Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2322/document.
Texte intégralMulti-objective problems arise in many real world scenarios where one has to find an optimal solution considering the trade-off between different competing objectives. Typical examples of multi-objective problems arise in classification, information retrieval, dictionary learning, online learning etc. In this thesis, we study and propose algorithms for multi-objective machine learning problems. We give many interesting examples of multi-objective learning problems which are actively persuaded by the research community to motivate our work. Majority of the state of the art algorithms proposed for multi-objective learning comes under what is called “scalarization method”, an efficient algorithm for solving multi-objective optimization problems. Having motivated our work, we study two multi-objective learning tasks in detail. In the first task, we study the problem of finding the optimal classifier for multivariate performance measures. The problem is studied very actively and recent papers have proposed many algorithms in different classification settings. We study the problem as finding an optimal trade-off between different classification errors, and propose an algorithm based on cost-sensitive classification. In the second task, we study the problem of diverse ranking in information retrieval tasks, in particular recommender systems. We propose an algorithm for diverse ranking making use of the domain specific information, and formulating the problem as a submodular maximization problem for coverage maximization in a weighted similarity graph. Finally, we conclude that scalarization based algorithms works well for multi-objective learning problems. But when considering algorithms for multi-objective learning problems, scalarization need not be the “to go” approach. It is very important to consider the domain specific information and objective functions. We end this thesis by proposing some of the immediate future work, which are currently being experimented, and some of the short term future work which we plan to carry out
He, Yuesheng. « The intelligent behavior of 3D graphical avatars based on machine learning methods ». HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1404.
Texte intégralSirin, Volkan. « Machine Learning Methods For Opponent Modeling In Games Of Imperfect Information ». Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614630/index.pdf.
Texte intégralWallis, David. « A study of machine learning and deep learning methods and their application to medical imaging ». Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST057.
Texte intégralWe first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models. We first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models
Livres sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
G, Carbonell Jaime, dir. Machine learning : Paradigms and methods. Cambridge, Mass : MIT Press, 1990.
Trouver le texte intégralSteven, Minton, et Symposium on Learning Methods for Planning Systems (1991 : Stanford University), dir. Machine learning methods for planning. San Mateo, Calif : M. Kaufmann, 1993.
Trouver le texte intégralG, Bourbakis Nikolaos, dir. Applications of learning & planning methods. Singapore : World Scientific, 1991.
Trouver le texte intégralAldrich, Chris. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. London : Springer London, 2013.
Trouver le texte intégralJ, Smola Alexander, dir. Learning with kernels : Support vector machines, regularization, optimization, and beyond. Cambridge, Mass : MIT Press, 2002.
Trouver le texte intégralChang, Victor, Harleen Kaur et Simon James Fong, dir. Artificial Intelligence and Machine Learning Methods in COVID-19 and Related Health Diseases. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04597-4.
Texte intégralBaruque, Bruno. Fusion methods for unsupervised learning ensembles. Berlin : Springer, 2010.
Trouver le texte intégralKatharina, Morik, dir. Knowledge acquisition and machine learning : Theory, methods and applications / Katharina Morik ... [et al.]. London : Academic Press, 1993.
Trouver le texte intégralservice), SpringerLink (Online, dir. Criminal Justice Forecasts of Risk : A Machine Learning Approach. New York, NY : Springer New York, 2012.
Trouver le texte intégralLéon-Charles, Tranchevent, Moor Bart, Moreau Yves et SpringerLink (Online service), dir. Kernel-based Data Fusion for Machine Learning : Methods and Applications in Bioinformatics and Text Mining. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
Joshi, Ameet V. « Linear Methods ». Dans Machine Learning and Artificial Intelligence, 33–41. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26622-6_4.
Texte intégralJoshi, Ameet V. « Linear Methods ». Dans Machine Learning and Artificial Intelligence, 45–56. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12282-8_5.
Texte intégralJovic, Alan, Dirmanto Jap, Louiza Papachristodoulou et Annelie Heuser. « Traditional Machine Learning Methods for Side-Channel Analysis ». Dans Security and Artificial Intelligence, 25–47. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98795-4_2.
Texte intégralBaldi, Pierre. « Machine Learning Methods for Computational Proteomics and Beyond ». Dans Advances in Artificial Intelligence, 8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44886-1_3.
Texte intégralAnh, Nguyen Thi Ngoc, Tran Ngoc Thang et Vijender Kumar Solanki. « Machine Learning and Ensemble Methods ». Dans Artificial Intelligence for Automated Pricing Based on Product Descriptions, 9–18. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4702-4_2.
Texte intégralTurtiainen, Hannu, Andrei Costin et Timo Hämäläinen. « Defensive Machine Learning Methods and the Cyber Defence Chain ». Dans Artificial Intelligence and Cybersecurity, 147–63. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15030-2_7.
Texte intégralTurtiainen, Hannu, Andrei Costin, Alex Polyakov et Timo Hämäläinen. « Offensive Machine Learning Methods and the Cyber Kill Chain ». Dans Artificial Intelligence and Cybersecurity, 125–45. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15030-2_6.
Texte intégralGhosh, Shyamasree, et Rathi Dasgupta. « Introduction to Artificial Intelligence (AI) Methods in Biology ». Dans Machine Learning in Biological Sciences, 19–27. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8881-2_2.
Texte intégralCastanheira, José, Francisco Curado, Ana Tomé et Edgar Gonçalves. « Machine Learning Methods for Radar-Based People Detection and Tracking ». Dans Progress in Artificial Intelligence, 412–23. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30241-2_35.
Texte intégralIosifidis, Alexandros, Anastasios Tefas et Ioannis Pitas. « Multi-view Regularized Extreme Learning Machine for Human Action Recognition ». Dans Artificial Intelligence : Methods and Applications, 84–94. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07064-3_7.
Texte intégralActes de conférences sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
Lin, Weibo, Zhu He et Mingyu Xiao. « Balanced Clustering : A Uniform Model and Fast Algorithm ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/414.
Texte intégralLin, Jianxin, Yingce Xia, Yijun Wang, Tao Qin et Zhibo Chen. « Image-to-Image Translation with Multi-Path Consistency Regularization ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/413.
Texte intégralLiu, Chuanjian, Yunhe Wang, Kai Han, Chunjing Xu et Chang Xu. « Learning Instance-wise Sparsity for Accelerating Deep Models ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/416.
Texte intégralZhang, Yizhou, Guojie Song, Lun Du, Shuwen Yang et Yilun Jin. « DANE : Domain Adaptive Network Embedding ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/606.
Texte intégralPizarro, Jorge, Byron Vásquez, Willan Steven Mendieta Molina et Remigio Hurtado. « Hepatitis predictive analysis model through deep learning using neural networks based on patient history ». Dans 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001449.
Texte intégralDeksne, Daiga. « Chat Language Normalisation using Machine Learning Methods ». Dans Special Session on Natural Language Processing in Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007693509650972.
Texte intégralGARIP, Evin, et Ayse Betul OKTAY. « Forecasting CO2 Emission with Machine Learning Methods ». Dans 2018 International Conference on Artificial Intelligence and Data Processing (IDAP). IEEE, 2018. http://dx.doi.org/10.1109/idap.2018.8620767.
Texte intégralLin, Zizhao, et Yijiang Ma. « Machine learning methods in predicting electroencephalogram ». Dans International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2021), sous la direction de Lei Zhang, Siting Chen et Mahmoud AlShawabkeh. SPIE, 2021. http://dx.doi.org/10.1117/12.2626522.
Texte intégralChen, Yi. « Driver fatigue detection using machine learning methods ». Dans 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2022. http://dx.doi.org/10.1109/icaica54878.2022.9844425.
Texte intégralZainuddin, Nur Nadirah, Muhammad Sadiq Naim Bin Noor Azhari, Wahidah Hashim, Ammar Ahmed Alkahtani, Abdulsalam Salihu Mustafa, Gamal Alkawsi et Fuad Noman. « Malaysian Coins Recognition Using Machine Learning Methods ». Dans 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS). IEEE, 2021. http://dx.doi.org/10.1109/aidas53897.2021.9574175.
Texte intégralRapports d'organisations sur le sujet "Machine Learning, Artificial Intelligence, Regularization Methods"
Varastehpour, Soheil, Hamid Sharifzadeh et Iman Ardekani. A Comprehensive Review of Deep Learning Algorithms. Unitec ePress, 2021. http://dx.doi.org/10.34074/ocds.092.
Texte intégralAlhasson, Haifa F., et Shuaa S. Alharbi. New Trends in image-based Diabetic Foot Ucler Diagnosis Using Machine Learning Approaches : A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, novembre 2022. http://dx.doi.org/10.37766/inplasy2022.11.0128.
Texte intégralYaroshchuk, Svitlana O., Nonna N. Shapovalova, Andrii M. Striuk, Olena H. Rybalchenko, Iryna O. Dotsenko et Svitlana V. Bilashenko. Credit scoring model for microfinance organizations. [б. в.], février 2020. http://dx.doi.org/10.31812/123456789/3683.
Texte intégralPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, septembre 2021. http://dx.doi.org/10.46337/210930.
Texte intégralDaudelin, Francois, Lina Taing, Lucy Chen, Claudia Abreu Lopes, Adeniyi Francis Fagbamigbe et Hamid Mehmood. Mapping WASH-related disease risk : A review of risk concepts and methods. United Nations University Institute for Water, Environment and Health, décembre 2021. http://dx.doi.org/10.53328/uxuo4751.
Texte intégral