Thèses sur le sujet « Manifolds (Mathematics) Nonlinear theories »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 25 meilleures thèses pour votre recherche sur le sujet « Manifolds (Mathematics) Nonlinear theories ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Gashler, Mike. « Manifold sculpting / ». Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1828.pdf.
Texte intégralVorpe, Katherine. « Understanding a Population Model for Mussel-Algae Interaction ». Wittenberg University Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wuhonors1617970789779916.
Texte intégralLai, Mijia. « Fully nonlinear flows and Hessian equations on compact Kahler manifolds ». Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1010.
Texte intégralWest, Philip Davidson. « Nonlinear filtering for stochastic hybrid and nonlinear systems with applications to target tracking ». Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/14808.
Texte intégralGuo, Sheng. « On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds ». The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.
Texte intégralConradie, Tanja. « Modelling of nonlinear dynamic systems : using surrogate data methods ». Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51834.
Texte intégralENGLISH ABSTRACT: This study examined nonlinear modelling techniques as applied to dynamic systems, paying specific attention to the Method of Surrogate Data and its possibilities. Within the field of nonlinear modelling, we examined the following areas of study: attractor reconstruction, general model building techniques, cost functions, description length, and a specific modelling methodology. The Method of Surrogate Data was initially applied in a more conventional application, i.e. testing a time series for nonlinear, dynamic structure. Thereafter, it was used in a less conventional application; i.e. testing the residual vectors of a nonlinear model for membership of identically and independently distributed (i.i.d) noise. The importance of the initial surrogate analysis of a time series (determining whether the apparent structure of the time series is due to nonlinear, possibly chaotic behaviour) was illustrated. This study confrrmed that omitting this crucial step could lead to a flawed conclusion. If evidence of nonlinear structure in the time series was identified, a radial basis model was constructed, using sophisticated software based on a specific modelling methodology. The model is an iterative algorithm using minimum description length as the stop criterion. The residual vectors of the models generated by the algorithm, were tested for membership of the dynamic class described as i.i.d noise. The results of this surrogate analysis illustrated that, as the model captures more of the underlying dynamics of the system (description length decreases), the residual vector resembles Li.d noise. It also verified that the minimum description length criterion leads to models that capture the underlying dynamics of the time series, with the residual vector resembling Li.d noise. In the case of the "worst" model (largest description length), the residual vector could be distinguished from Li.d noise, confirming that it is not the "best" model. The residual vector of the "best" model (smallest description length), resembled Li.d noise, confirming that the minimum description length criterion selects a model that captures the underlying dynamics of the time series. These applications were illustrated through analysis and modelling of three time series: a time series generated by the Lorenz equations, a time series generated by electroencephalograhpic signal (EEG), and a series representing the percentage change in the daily closing price of the S&P500 index.
AFRIKAANSE OPSOMMING: In hierdie studie ondersoek ons nie-lineere modelleringstegnieke soos toegepas op dinamiese sisteme. Spesifieke aandag word geskenk aan die Metode van Surrogaat Data en die moontlikhede van hierdie metode. Binne die veld van nie-lineere modellering het ons die volgende terreine ondersoek: attraktor rekonstruksie, algemene modelleringstegnieke, kostefunksies, beskrywingslengte, en 'n spesifieke modelleringsalgoritme. Die Metode and Surrogaat Data is eerstens vir 'n meer algemene toepassing gebruik wat die gekose tydsreeks vir aanduidings van nie-lineere, dimanise struktuur toets. Tweedens, is dit vir 'n minder algemene toepassing gebruik wat die residuvektore van 'n nie-lineere model toets vir lidmaatskap van identiese en onafhanlike verspreide geraas. Die studie illustreer die noodsaaklikheid van die aanvanklike surrogaat analise van 'n tydsreeks, wat bepaal of die struktuur van die tydsreeks toegeskryf kan word aan nie-lineere, dalk chaotiese gedrag. Ons bevesting dat die weglating van hierdie analise tot foutiewelike resultate kan lei. Indien bewyse van nie-lineere gedrag in die tydsreeks gevind is, is 'n model van radiale basisfunksies gebou, deur gebruik te maak van gesofistikeerde programmatuur gebaseer op 'n spesifieke modelleringsmetodologie. Dit is 'n iteratiewe algoritme wat minimum beskrywingslengte as die termineringsmaatstaf gebruik. Die model se residuvektore is getoets vir lidmaatskap van die dinamiese klas wat as identiese en onafhanlike verspreide geraas bekend staan. Die studie verifieer dat die minimum beskrywingslengte as termineringsmaatstaf weI aanleiding tot modelle wat die onderliggende dinamika van die tydsreeks vasvang, met die ooreenstemmende residuvektor wat nie onderskei kan word van indentiese en onafhanklike verspreide geraas nie. In die geval van die "swakste" model (grootse beskrywingslengte), het die surrogaat analise gefaal omrede die residuvektor van indentiese en onafhanklike verspreide geraas onderskei kon word. Die residuvektor van die "beste" model (kleinste beskrywingslengte), kon nie van indentiese en onafhanklike verspreide geraas onderskei word nie en bevestig ons aanname. Hierdie toepassings is aan die hand van drie tydsreekse geillustreer: 'n tydsreeks wat deur die Lorenz vergelykings gegenereer is, 'n tydsreeks wat 'n elektroenkefalogram voorstel en derdens, 'n tydsreeks wat die persentasie verandering van die S&P500 indeks se daaglikse sluitingsprys voorstel.
Rejoub, Riad A. « Projective and non-projective systems of first order nonlinear differential equations ». Scholarly Commons, 1992. https://scholarlycommons.pacific.edu/uop_etds/2228.
Texte intégralO'Bannon, Terry Robert. « A comparison of interpolative methods for cell mapping analyses of nonlinear systems ». Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/16394.
Texte intégralLi, Jian. « Three dimensional isoparametric finite element analysis with geometric and material nonlinearities ». Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/12165.
Texte intégralLiu, Xing. « Rigorous exponential asymptotics for a nonlinear third order difference equation ». Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1101927781.
Texte intégralTitle from first page of PDF file. Document formatted into pages; contains viii, 140 p.; also includes graphics. Includes bibliographical references (p. 139-140).
Asfaw, Teffera Mekonnen. « Topological Degree and Variational Inequality Theories for Pseudomonotone Perturbations of Maximal Monotone Operators ». Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4433.
Texte intégralBouguerra, Hichem. « Non-linear response of a fluid valve ». Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/101164.
Texte intégralM.S.
Liu, Fang. « Numerical solutions of nonlinear elliptic problem using combined-block iterative methods / ». Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/liuf/fangliu.pdf.
Texte intégralCao, Libo. « Nonlinear Wavelet Compression Methods for Ion Analyses and Dynamic Modeling of Complex Systems ». Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1107790393.
Texte intégralKasnakoglu, Cosku. « Reduced order modeling, nonlinear analysis and control methods for flow control problems ». Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195629380.
Texte intégralKaschner, Scott R. « Superstable manifolds of invariant circles ». 2013. http://hdl.handle.net/1805/3749.
Texte intégralLet f:X\rightarrow X be a dominant meromorphic self-map, where X is a compact, connected complex manifold of dimension n > 1. Suppose there is an embedded copy of \mathbb P^1 that is invariant under f, with f holomorphic and transversally superattracting with degree a in some neighborhood. Suppose also that f restricted to this line is given by z\rightarrow z^b, with resulting invariant circle S. We prove that if a ≥ b, then the local stable manifold W^s_loc(S) is real analytic. In fact, we state and prove a suitable localized version that can be useful in wider contexts. We then show that the condition a ≥ b cannot be relaxed without adding additional hypotheses by resenting two examples with a < b for which W^s_loc(S) is not real analytic in the neighborhood of any point.
Makukula, Zodwa Gcinaphi. « On new and improved semi-numerical techniques for solving nonlinear fluid flow problems ». Thesis, 2012. http://hdl.handle.net/10413/8182.
Texte intégralThesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
« Nonlinear stability of viscous transonic flow through a nozzle ». 2004. http://library.cuhk.edu.hk/record=b5892103.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 65-71).
Abstracts in English and Chinese.
Acknowledgments --- p.i
Abstract --- p.ii
Introduction --- p.3
Chapter 1 --- Stability of Shock Waves in Viscous Conservation Laws --- p.10
Chapter 1.1 --- Cauchy Problem for Scalar Viscous Conservation Laws and Viscous Shock Profiles --- p.10
Chapter 1.2 --- Stability of Shock Waves by Energy Method --- p.15
Chapter 1.3 --- Nonlinear Stability of Shock Waves by Spectrum Anal- ysis --- p.20
Chapter 1.4 --- L1 Stability of Shock Waves in Scalar Viscous Con- servation Laws --- p.26
Chapter 2 --- Propagation of a Viscous Shock in Bounded Domain and Half Space --- p.35
Chapter 2.1 --- Slow Motion of a Viscous Shock in Bounded Domain --- p.36
Chapter 2.1.1 --- Steady Problem and Projection Method --- p.36
Chapter 2.1.2 --- Projection Method for Time-Dependent Prob- lem --- p.40
Chapter 2.1.3 --- Super-Sensitivity of Boundary Conditions --- p.43
Chapter 2.1.4 --- WKB Transformation Method --- p.45
Chapter 2.2 --- Propagation of a Stationary Shock in Half Space --- p.50
Chapter 2.2.1 --- Asymptotic Analysis --- p.50
Chapter 2.2.2 --- Pointwise Estimate --- p.51
Chapter 3 --- Nonlinear Stability of Viscous Transonic Flow Through a Nozzle --- p.58
Chapter 3.1 --- Matched Asymptotic Analysis --- p.58
Bibliography --- p.65
« Clustered layer solutions for singularly perturbed problems with general non-autonomous nonlinearities ». 2005. http://library.cuhk.edu.hk/record=b5892348.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 36-39).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.4
Chapter 2 --- Some Preliminary Analysis --- p.11
Chapter 3 --- An Auxiliary Linear problem --- p.16
Chapter 4 --- Construction of natural constraint --- p.22
Chapter 5 --- Energy computation for reduced energy functional --- p.26
Chapter 6 --- Proof of Theorem 1.1 --- p.29
Bibliography --- p.36
McBride, Dean Christian Tait. « An investigation of techniques for nonlinear state observation ». Thesis, 2016. http://hdl.handle.net/10539/22656.
Texte intégralAn investigation and analysis of a collection of different techniques, for estimating the states of nonlinear systems, was undertaken. It was found that most of the existing literature on the topic could be organized into several groups of nonlinear observer design techniques, of which each group follows a specific concept and slight variations thereof. From out of this investigation it was discovered that a variation of the adaptive observer could be successfully applied to numerous nonlinear systems, given only limited output information. This particular technique formed the foundation on which a design procedure was developed in order to asymptotically estimate the states of nonlinear systems of a certain form, using only partial state information available. Lyapunov stability theory was used to prove the validity of this technique, given that certain conditions and assumptions are satisfied. A heuristic procedure was then developed to get a linearized model of the error transient behaviour that could form the upper bounds of the transient times of the observer. The technique above, characterized by a design algorithm, was then applied to three well-known nonlinear systems; namely the Lorenz attractor, the Rössler attractor, and the Van Der Pol oscillator. The results, illustrated through numerical simulation, clearly indicate that the technique developed is successful, provided all assumptions and conditions are satisfied.
MT2017
Yin, Biao. « Gradient estimates for the conductivity problems and the systems of elasticity ». 2009. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051925.
Texte intégral« Optimization with block variables : theory and applications ». 2012. http://library.cuhk.edu.hk/record=b5549571.
Texte intégralIn this thesis we present a systematic analysis for optimization of a general nonlinear function, subject to some fairly general constraints. A typical example includes the optimization of a multilinear tensor function over spherical constraints. Such models have found wide applications in numerical linear algebra, material sciences, quantum physics, signal processing, speech recognition, biomedical engineering, and control theory. This thesis is mainly concerned with a specific approach to solve such generic models: the block variable improvement method. Specifically, we establish a block coordinate descent type search method for nonlinear optimization, which accepts only a block update that achieves the maximum improvement (hence the name of our new search method: maximum block improvement (MBI)). Then, we focus on the potential capability of this method for solving problems in various research area. First, we demonstrate that this method can be directly used in designing a new framework for co-clustering gene expression data in the area of bioinformatics. Second, we turn our attention to the spherically constrained homogeneous polynomial optimization problem, which is related to best rank-one approximation of tensors. The MBI method usually finds the global optimal solution at a low computational cost. Third, we continue to consider polynomial optimization problems. A general result between homogeneous polynomials and multi-linear forms under the concept of co-quadratic positive semidefinite is established. Finally, we consider the problem of finding the best multi-linear rank approximation of a higher-order tensor under the framework of Tucker decomposition, and also propose a new model and algorithms for computing Tucker decomposition with unknown number of components. Some real application examples are discussed and tested, and numerical experiments are reported to reveal the good practical performance and efficiency of the proposed algorithms for solving those problems.
Detailed summary in vernacular field only.
Chen, Bilian.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 86-98).
Abstract also in Chinese.
Abstract --- p.iii
Acknowledgements --- p.vii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Overview --- p.1
Chapter 1.2 --- Notations and Preliminaries --- p.5
Chapter 1.2.1 --- The Tensor Operations --- p.6
Chapter 1.2.2 --- The Tensor Ranks --- p.9
Chapter 1.2.3 --- Polynomial Functions --- p.11
Chapter 2 --- The Maximum Block Improvement Method --- p.12
Chapter 2.1 --- Introduction --- p.12
Chapter 2.2 --- MBI Method and Convergence Analysis --- p.14
Chapter 3 --- Co-Clustering of Gene Expression Data --- p.19
Chapter 3.1 --- Introduction --- p.19
Chapter 3.2 --- A New Generic Framework for Co-Clustering Gene Expression Data --- p.22
Chapter 3.2.1 --- Tensor Optimization Model of The Co-Clustering Problem --- p.22
Chapter 3.2.2 --- The MBI Method for Co-Clustering Problem --- p.23
Chapter 3.3 --- Algorithm for Co-Clustering 2D Matrix Data --- p.25
Chapter 3.4 --- Numerical Experiments --- p.27
Chapter 3.4.1 --- Implementation Details and Some Discussions --- p.27
Chapter 3.4.2 --- Testing Results using Microarray Datasets --- p.30
Chapter 3.4.3 --- Testing Results using 3D Synthesis Dataset --- p.32
Chapter 4 --- Polynomial Optimization with Spherical Constraint --- p.34
Chapter 4.1 --- Introduction --- p.34
Chapter 4.2 --- Generalized Equivalence Result --- p.37
Chapter 4.3 --- Spherically Constrained Homogeneous Polynomial Optimization --- p.41
Chapter 4.3.1 --- Implementing MBI on Multilinear Tensor Form --- p.42
Chapter 4.3.2 --- Relationship between Homogeneous Polynomial Optimization over Spherical Constraint and Tensor Relaxation Form --- p.43
Chapter 4.3.3 --- Finding a KKT point for Homogeneous Polynomial Optimization over Spherical Constraint --- p.45
Chapter 4.4 --- Numerical Experiments on Randomly Simulated Data --- p.47
Chapter 4.4.1 --- Multilinear Tensor Function over Spherical Constraints --- p.49
Chapter 4.4.2 --- Tests of Another Implementation of MBI --- p.49
Chapter 4.4.3 --- General Polynomial Function over Quadratic Constraints --- p.51
Chapter 4.5 --- Applications --- p.53
Chapter 4.5.1 --- Rank-One Approximation of Super-Symmetric Tensors --- p.54
Chapter 4.5.2 --- Magnetic Resonance Imaging --- p.55
Chapter 5 --- Logarithmically Quasiconvex Optimization --- p.58
Chapter 5.1 --- Introduction --- p.58
Chapter 5.2 --- Logarithmically Quasiconvex Optimization --- p.60
Chapter 5.2.1 --- A Simple Motivating Example --- p.61
Chapter 5.2.2 --- Co-Quadratic Positive Semide nite Tensor Form --- p.61
Chapter 5.2.3 --- Equivalence at Maxima --- p.64
Chapter 6 --- The Tucker Decomposition and Generalization --- p.68
Chapter 6.1 --- Introduction --- p.68
Chapter 6.2 --- Convergence of Traditional Tucker Decomposition --- p.71
Chapter 6.3 --- Tucker Decomposition with Unknown Number of Components --- p.73
Chapter 6.3.1 --- Problem Formulation --- p.74
Chapter 6.3.2 --- Implementing the MBI Method on Tucker Decomposition with Unknown Number of Components --- p.75
Chapter 6.3.3 --- A Heuristic Approach --- p.79
Chapter 6.4 --- Numerical Experiments --- p.80
Chapter 7 --- Conclusion and Recent Developments --- p.83
Bibliography --- p.86
Sangeeta, K. « Numerical Simulation Of Converging Nonlinear Wavefronts ». Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1901.
Texte intégralAlekseev, Vadim. « Noncommutative manifolds and Seiberg-Witten-equations ». Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B3ED-D.
Texte intégralEckhardt, Julian. « Bending energy regularization on shape spaces : a class of iterative methods on manifolds and applications to inverse obstacle problems ». Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-12D0-B.
Texte intégral