Littérature scientifique sur le sujet « Mathematical optimization »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mathematical optimization ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mathematical optimization"
Kulcsár, T., et I. Timár. « Mathematical optimization and engineering applications ». Mathematical Modeling and Computing 3, no 1 (1 juillet 2016) : 59–78. http://dx.doi.org/10.23939/mmc2016.01.059.
Texte intégralBhardwaj, Suyash, Seema Kashyap et Anju Shukla. « A Novel Approach For Optimization In Mathematical Calculations Using Vedic Mathematics Techniques ». MATHEMATICAL JOURNAL OF INTERDISCIPLINARY SCIENCES 1, no 1 (2 juillet 2012) : 23–34. http://dx.doi.org/10.15415/mjis.2012.11002.
Texte intégralChawla, Dr Meenu. « Mathematical optimization techniques ». Pharma Innovation 8, no 2 (1 janvier 2019) : 888–92. http://dx.doi.org/10.22271/tpi.2019.v8.i2n.25454.
Texte intégralSuhl, Uwe H. « MOPS — Mathematical optimization system ». European Journal of Operational Research 72, no 2 (janvier 1994) : 312–22. http://dx.doi.org/10.1016/0377-2217(94)90312-3.
Texte intégralBlaydа, I. A. « OPTIMIZATION OF THE COAL BACTERIAL DESULFURIZATION USING MATHEMATICAL METHODS ». Biotechnologia Acta 11, no 6 (décembre 2018) : 55–66. http://dx.doi.org/10.15407/biotech11.06.055.
Texte intégralRequelme Ibáñez, Rosa María, Carlos Abel Reyes Alvarado et Jorge Luis Lozano Cervera. « Mathematical optimization for economic agents ». Revista Ciencia y Tecnología 17, no 3 (9 septembre 2021) : 81–89. http://dx.doi.org/10.17268/rev.cyt.2021.03.07.
Texte intégralSezer, Ali Devin, et Gerhard-Wilhelm Weber. « Optimization Methods in Mathematical Finance ». Optimization 62, no 11 (novembre 2013) : 1399–402. http://dx.doi.org/10.1080/02331934.2013.863528.
Texte intégralStanojević, Milan, et Bogdana Stanojević. « Lua APIs for mathematical optimization ». Procedia Computer Science 242 (2024) : 460–65. http://dx.doi.org/10.1016/j.procs.2024.08.160.
Texte intégralGarcía, J. M., C. A. Acosta et M. J. Mesa. « Genetic algorithms for mathematical optimization ». Journal of Physics : Conference Series 1448 (janvier 2020) : 012020. http://dx.doi.org/10.1088/1742-6596/1448/1/012020.
Texte intégralGorissen, Bram L., Jan Unkelbach et Thomas R. Bortfeld. « Mathematical Optimization of Treatment Schedules ». International Journal of Radiation Oncology*Biology*Physics 96, no 1 (septembre 2016) : 6–8. http://dx.doi.org/10.1016/j.ijrobp.2016.04.012.
Texte intégralThèses sur le sujet "Mathematical optimization"
Keanius, Erik. « Mathematical Optimization in SVMs ». Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297492.
Texte intégralZhou, Fangjun. « Nonmonotone methods in optimization and DC optimization of location problems ». Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21777.
Texte intégralHolm, Åsa. « Mathematical Optimization of HDR Brachytherapy ». Doctoral thesis, Linköpings universitet, Optimeringslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-99795.
Texte intégralNajafiazar, Bahador. « Mathematical Optimization in Reservoir Management ». Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27058.
Texte intégralSaunders, David. « Applications of optimization to mathematical finance ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29265.pdf.
Texte intégralChang, Tyler Hunter. « Mathematical Software for Multiobjective Optimization Problems ». Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98915.
Texte intégralDoctor of Philosophy
Science and engineering are full of multiobjective tradeoff problems. For example, a portfolio manager may seek to build a financial portfolio with low risk, high return rates, and minimal transaction fees; an aircraft engineer may seek a design that maximizes lift, minimizes drag force, and minimizes aircraft weight; a chemist may seek a catalyst with low viscosity, low production costs, and high effective yield; or a computational scientist may seek to fit a numerical model that minimizes the fit error while also minimizing a regularization term that leverages domain knowledge. Often, these criteria are conflicting, meaning that improved performance by one criterion must be at the expense of decreased performance in another criterion. The solution to a multiobjective optimization problem allows decision makers to balance the inherent tradeoff between conflicting objectives. A related problem is the multivariate interpolation problem, where the goal is to predict the outcome of an event based on a database of past observations, while exactly matching all observations in that database. Multivariate interpolation problems are equally as prevalent and impactful as multiobjective optimization problems. For example, a pharmaceutical company may seek a prediction for the costs and effects of a proposed drug; an aerospace engineer may seek a prediction for the lift and drag of a new aircraft design; or a search engine may seek a prediction for the classification of an unlabeled image. Delaunay interpolation offers a unique solution to this problem, backed by decades of rigorous theory and analytical error bounds, but does not scale to high-dimensional "big data" problems. In this thesis, novel algorithms and software are proposed for solving both of these extremely difficult problems.
ROSSI, FILIPPO. « Mathematical models for selling process optimization ». Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1050078.
Texte intégralRossetti, Gaia. « Mathematical optimization techniques for cognitive radar networks ». Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33419.
Texte intégralTrescher, Saskia. « Estimating Gene Regulatory Activity using Mathematical Optimization ». Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21900.
Texte intégralGene regulation is one of the most important cellular processes and closely interlinked pathogenesis. The elucidation of regulatory mechanisms can be approached by many experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive models requires rigorous computational methods. A prominent class of methods models genome-wide gene expression as sets of (linear) equations over the activity and relationships of transcription factors (TFs), genes and other factors and optimizes parameters to fit the measured expression intensities. Despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. We review five recent methods of this class and compare them qualitatively and quantitatively in a unified framework. Our results show that the result overlaps are very low, though sometimes statistically significant. This poor overall performance cannot be attributed to the sample size or to the specific regulatory network provided as background knowledge. We suggest that a reason for this deficiency might be the simplistic model of cellular processes in the presented methods, where TF self-regulation and feedback loops were not represented. We propose a new method for estimating transcriptional activity, named Florae, with a particular focus on the consideration of feedback loops and evaluate its results. Using Floræ, we are able to improve the identification of knockout and knockdown TFs in synthetic data sets. Our results and the proposed method extend the knowledge about gene regulatory activity and are a step towards the identification of causes and mechanisms of regulatory (dys)functions, supporting the development of medical biomarkers and therapies.
Haddon, Antoine. « Mathematical Modeling and Optimization for Biogas Production ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS047.
Texte intégralAnaerobic digestion is a biological process in which organic compounds are degraded by different microbial populations into biogas (carbon dioxyde and methane), which can be used as a renewable energy source. This thesis works towards developing control strategies and bioreactor designs that maximize biogas production.The first part focuses on the optimal control problem of maximizing biogas production in a chemostat in several directions. We consider the single reaction model and the dilution rate is the controlled variable.For the finite horizon problem, we study feedback controllers similar to those used in practice and consisting in driving the reactor towards a given substrate level and maintaining it there. Our approach relies on establishing bounds of the unknown value function by considering different rewards for which the optimal solution has an explicit optimal feedback that is time-independent. In particular, this technique provides explicit bounds on the sub-optimality of the studied controllers for a broad class of substrate and biomass dependent growth rate functions. With numerical simulations, we show that the choice of the best feedback depends on the time horizon and initial condition.Next, we consider the problem over an infinite horizon, for averaged and discounted rewards. We show that, when the discount rate goes to 0, the value function of the discounted problem converges and that the limit is equal to the value function for the averaged reward. We identify a set of optimal solutions for the limit and averaged problems as the controls that drive the system towards a state that maximizes the biogas flow rate on an special invariant set.We then return to the problem over a fixed finite horizon and with the Pontryagin Maximum Principle, we show that the optimal control has a bang singular arc structure. We construct a one parameter family of extremal controls that depend on the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we identify the optimal control as the extremal associated with the value of the Hamiltonian which satisfies a fixed point equation. We then propose a numerical algorithm to compute the optimal control by solving this fixed point equation. We illustrate this method with the two major types of growth functions of Monod and Haldane.In the second part, we investigate the impact of mixing the reacting medium on biogas production. For this we introduce a model of a pilot scale upflow fixed bed bioreactor that offers a representation of spatial features. This model takes advantage of reactor geometry to reduce the spatial dimension of the section containing the fixed bed and in other sections, we consider the 3D steady-state Navier-Stokes equations for the fluid dynamics. To represent the biological activity, we use a 2 step model and for the substrates, advection-diffusion-reaction equations. We only consider the biomasses that are attached in the fixed bed section and we model their growth with a density dependent function. We show that this model can reproduce the spatial gradient of experimental data and helps to better understand the internal dynamics of the reactor. In particular, numerical simulations indicate that with less mixing, the reactor is more efficient, removing more organic matter and producing more biogas
Livres sur le sujet "Mathematical optimization"
Snyman, Jan A., et Daniel N. Wilke. Practical Mathematical Optimization. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77586-9.
Texte intégralL, Rardin Ronald, dir. Discrete optimization. Boston : Academic Press, 1988.
Trouver le texte intégralDingzhu, Du, Pardalos P. M. 1954- et Wu Weili, dir. Mathematical theory of optimization. Dordrecht : Kluwer Academic, 2001.
Trouver le texte intégralHoffmann, Karl-Heinz, Jochem Zowe, Jean-Baptiste Hiriart-Urruty et Claude Lemarechal, dir. Trends in Mathematical Optimization. Basel : Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9297-1.
Texte intégralPallaschke, Diethard, et Stefan Rolewicz. Foundations of Mathematical Optimization. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1588-1.
Texte intégralHürlimann, Tony. Mathematical Modeling and Optimization. Boston, MA : Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5793-4.
Texte intégralDu, Ding-Zhu, Panos M. Pardalos et Weili Wu, dir. Mathematical Theory of Optimization. Boston, MA : Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8.
Texte intégralOberwolfach), Tagung Methoden und Verfahren der Mathematischen Physik (11th 1985 Mathematisches Forschungsinstitut. Optimization in mathematical physics. Frankfurt am Main : P. Lang, 1987.
Trouver le texte intégralDu, Dingzhu. Mathematical Theory of Optimization. Boston, MA : Springer US, 2001.
Trouver le texte intégralGuddat, Jürgen. Multiobjective and stochastic optimization based on parametric optimization. Berlin : Akademie-Verlag, 1985.
Trouver le texte intégralChapitres de livres sur le sujet "Mathematical optimization"
Schittkowski, Klaus. « Mathematical Optimization ». Dans Software Systems for Structural Optimization, 33–42. Basel : Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8553-9_2.
Texte intégralWang, Liang, et Jianxin Zhao. « Mathematical Optimization ». Dans Architecture of Advanced Numerical Analysis Systems, 87–119. Berkeley, CA : Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_4.
Texte intégralPappalardo, Elisa, Panos M. Pardalos et Giovanni Stracquadanio. « Mathematical Optimization ». Dans SpringerBriefs in Optimization, 13–25. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9053-1_3.
Texte intégralCao, Bing-Yuan. « Mathematical Preliminaries ». Dans Applied Optimization, 1–22. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0009-4_1.
Texte intégralKogan, Konstantin, et Eugene Khmelnitsky. « Mathematical Background ». Dans Applied Optimization, 19–35. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4675-7_2.
Texte intégralSchittkowski, Klaus. « Mathematical Foundations ». Dans Applied Optimization, 7–118. Boston, MA : Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-5762-7_2.
Texte intégralBelenky, Alexander S. « Mathematical Programming ». Dans Applied Optimization, 13–90. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6075-0_2.
Texte intégralLobato, Fran Sérgio, et Valder Steffen. « Mathematical ». Dans Multi-Objective Optimization Problems, 77–108. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58565-9_5.
Texte intégralNeumaier, Arnold. « Mathematical Model Building ». Dans Applied Optimization, 37–43. Boston, MA : Springer US, 2004. http://dx.doi.org/10.1007/978-1-4613-0215-5_3.
Texte intégralBhatti, M. Asghar. « Mathematical Preliminaries ». Dans Practical Optimization Methods, 75–129. New York, NY : Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0501-2_3.
Texte intégralActes de conférences sur le sujet "Mathematical optimization"
Chen, Guoxin, Minpeng Liao, Chengxi Li et Kai Fan. « Step-level Value Preference Optimization for Mathematical Reasoning ». Dans Findings of the Association for Computational Linguistics : EMNLP 2024, 7889–903. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.463.
Texte intégralZhao, Xueliang, Xinting Huang, Wei Bi et Lingpeng Kong. « SEGO : Sequential Subgoal Optimization for Mathematical Problem-Solving ». Dans Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers), 7544–65. Stroudsburg, PA, USA : Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.407.
Texte intégralSanthamoorthy, Pooja Zen, et Selen Cremaschi. « Mathematical Optimization of Separator Network Design for Sand Management ». Dans Foundations of Computer-Aided Process Design, 892–98. Hamilton, Canada : PSE Press, 2024. http://dx.doi.org/10.69997/sct.154881.
Texte intégralDe Kock, D. J., M. Nagulapally, J. A. Visser, R. Nair et J. Nigen. « Mathematical Optimization of Electronic Enclosures ». Dans ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73185.
Texte intégralFindeisen, Bernd, Mario Schwalbe, Norman Gunther et Lutz Stiegler. « NVH Optimization of Driveline with Mathematical Optimization Methods ». Dans Symposium on International Automotive Technology 2013. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2013. http://dx.doi.org/10.4271/2013-26-0089.
Texte intégralPoole, Daniel J., Christian B. Allen et T. Rendall. « Metric-Based Mathematical Derivation of Aerofoil Design Variables ». Dans 10th AIAA Multidisciplinary Design Optimization Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0114.
Texte intégralMorris, R. M., J. A. Snyman et Josua P. Meyer. « MATHEMATICAL OPTIMIZATION OF JETS IN CROSSFLOW ». Dans Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p26.200.
Texte intégralEWING, M., et V. VENKAYYA. « Structural identification using mathematical optimization techniques ». Dans 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1135.
Texte intégralAlmosa, Nadia Ali Abbas, et Ahmed Sabah Al-Jilawi. « Developing mathematical optimization models with Python ». Dans AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0119585.
Texte intégralLee, Eva K., Tsung-Lin Wu, Onur Seref, O. Erhun Kundakcioglu et Panos Pardalos. « Classification and disease prediction via mathematical programming ». Dans DATA MINING, SYSTEMS ANALYSIS AND OPTIMIZATION IN BIOMEDICINE. AIP, 2007. http://dx.doi.org/10.1063/1.2817343.
Texte intégralRapports d'organisations sur le sujet "Mathematical optimization"
Lovianova, Iryna V., Dmytro Ye Bobyliev et Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], septembre 2019. http://dx.doi.org/10.31812/123456789/3267.
Texte intégralVenkayya, Vipperla B., et Victoria A. Tischler. A Compound Scaling Algorithm for Mathematical Optimization. Fort Belvoir, VA : Defense Technical Information Center, février 1989. http://dx.doi.org/10.21236/ada208446.
Texte intégralEskow, Elizabeth, et Robert B. Schnabel. Mathematical Modeling of a Parallel Global Optimization Algorithm. Fort Belvoir, VA : Defense Technical Information Center, avril 1988. http://dx.doi.org/10.21236/ada446514.
Texte intégralPasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning : Theory, Simulation, and Scientific Computing. National Education Services, mars 2025. https://doi.org/10.62311/nesx/rriv125.
Texte intégralDe Silva, K. N. A mathematical model for optimization of sample geometry for radiation measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122732.
Texte intégralXie, Haiyan, et Mangolika Bhattacharya. MATH-DT : Development of Mathematical Models for Large-Scale Nonlinear Optimization for Digital Twins Nomenclature Table. Illinois State University, 2025. https://doi.org/10.30707/1741890724.245225.
Texte intégralWegley, H. L., et J. C. Barnard. Using the NOABL flow model and mathematical optimization as a micrositing tool. Office of Scientific and Technical Information (OSTI), novembre 1986. http://dx.doi.org/10.2172/6979883.
Texte intégralTurinsky, Paul, et Ross Hays. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis. Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1024390.
Texte intégralIyer, Ananth V., Samuel Labi, Steven R. Dunlop, Dutt J. Thakkar, Sayak Mishra, Lavanya Krishna Kumar, Runjia Du, Miheeth Gala, Apoorva Banerjee et Gokul Siddharthan. Heavy Fleet and Facilities Optimization. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317365.
Texte intégralHector Colonmer, Prabhu Ganesan, Nalini Subramanian, Dr. Bala Haran, Dr. Ralph E. White et Dr. Branko N. Popov. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS : EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), septembre 2002. http://dx.doi.org/10.2172/808855.
Texte intégral