Littérature scientifique sur le sujet « Mathematical Proof and Demonstration »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mathematical Proof and Demonstration ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mathematical Proof and Demonstration"
Hirschhorn, Daniel B., et Denisse R. Thompson. « Technology and Reasoning in Algebra and Geometry ». Mathematics Teacher 89, no 2 (février 1996) : 138–42. http://dx.doi.org/10.5951/mt.89.2.0138.
Texte intégralKarunakaran, Shiv, Ben Freeburn, Nursen Konuk et Fran Arbaugh. « Improving Preservice Secondary Mathematics Teachers' Capability With Generic Example Proofs ». Mathematics Teacher Educator 2, no 2 (mars 2014) : 158–70. http://dx.doi.org/10.5951/mathteaceduc.2.2.0158.
Texte intégralMeo, Santolo, et Luisa Toscano. « On the Existence and Uniqueness of the ODE Solution and Its Approximation Using the Means Averaging Approach for the Class of Power Electronic Converters ». Mathematics 9, no 10 (19 mai 2021) : 1146. http://dx.doi.org/10.3390/math9101146.
Texte intégralHodds, Mark, Lara Alcock et Matthew Inglis. « Self-Explanation Training Improves Proof Comprehension ». Journal for Research in Mathematics Education 45, no 1 (janvier 2014) : 62–101. http://dx.doi.org/10.5951/jresematheduc.45.1.0062.
Texte intégralBarbero, M., T. Fritzsch, L. Gonella, F. Hügging, H. Krüger, M. Rothermund et N. Wermes. « A via last TSV process applied to ATLAS pixel detector modules : proof of principle demonstration ». Journal of Instrumentation 7, no 08 (10 août 2012) : P08008. http://dx.doi.org/10.1088/1748-0221/7/08/p08008.
Texte intégralArpaia, P., M. Buzio, M. Kazazi et S. Russenschuck. « Proof-of-principle demonstration of a translating coils-based method for measuring the magnetic field of axially-symmetric magnets ». Journal of Instrumentation 10, no 02 (10 février 2015) : P02004. http://dx.doi.org/10.1088/1748-0221/10/02/p02004.
Texte intégralAnellis, Irving. « Charles Peirce and Bertrand Russell on Euclid ». Revista Brasileira de História da Matemática 19, no 37 (16 octobre 2020) : 79–94. http://dx.doi.org/10.47976/rbhm2019v19n3779-94.
Texte intégralIvliev, Y. « DIAGNOSTICS OF MATHEMATICAL PROOF OF THE BEAL CONJECTURE IN MEDICAL PSYCHOLOGY (REMAKE OF PREVIOUS AUTHOR’S ARTICLES CONCERNING FERMAT’S LAST THEOREM) ». East European Scientific Journal 1, no 5(69) (15 juin 2021) : 28–33. http://dx.doi.org/10.31618/essa.2782-1994.2021.1.69.48.
Texte intégralCasesnoves, Francisco. « Inverse methods and integral-differential model demonstration for optimal mechanical operation of power plants – numerical graphical optimization for second generation of tribology models ». Electrical, Control and Communication Engineering 14, no 1 (1 juillet 2018) : 39–50. http://dx.doi.org/10.2478/ecce-2018-0005.
Texte intégralDi Liscia, Daniel. « The conclusio pulchra, mirabilis et bona : an ingenious demonstration attributable to Nicole Oresme ». Mediaevalia Textos e estudos 37 (2018) : 139–68. http://dx.doi.org/10.21747/21836884/med37a7.
Texte intégralThèses sur le sujet "Mathematical Proof and Demonstration"
Lima, Marcella Luanna da Silva. « Sobre pensamento geomátrico, provas e demonstrações matemáticas de alunos do 2º ano do Ensino Médio nos ambientes Lápis e Papel e Geogebra ». Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2336.
Texte intégralApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:00Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:11Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Made available in DSpace on 2016-07-21T20:47:11Z (GMT). No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5) Previous issue date: 2015-12-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Our research work aimed to investigate what type of proof, mathematical demonstration and level of geometrical thinking can occur from a didactic proposal within pencil, paper and GeoGebra environments. As qualitative research and study case, we used as instruments essays with Mathematical Proof and Demonstration themes, a didactic proposal developed by a team of five people who inserted worked collaboratively in the CAPES/OBEDUC/UFMS/UEPB/UFAL Project, field notes, participant observation, audios and photos. We elaborated a didactic proposal with eighteen activities, divided into four parts, which encouraged the students to reflect, justify, prove and demonstrate. The proposal application was carried out in July 2015 with High School 2nd year students of a public school in the town of Areia, Paraíba. For such, the students organized themselves in couples and one trio and the data collection happened in three moments. In the first moment we applied the essay, revised angles, triangles and theorems with the students and worked GeoGebra application with them. In the second moment we applied Parts I and II of the proposal with eight activities on Pythagoras Theorem and three activities on Sum of the Internal Angles of a Triangle Theorem, respectively. In the third moment we applied Part III, with two questions on External Angle Theorem and Part IV, with five question to be worked with the GeoGebra application on Pythagoras Theorem and Sum of the Internal Angles of a Triangle Theorem. In our research work we analyzed the work developed by the trio of students, once they were great in responding all the questions/activities. We analyzed Activity 8 of Part I, Activity 1 and 2 of Part II and all Activities of Part IV, totalizing in eight questions. We used the triangulation method for our study case and, firstly, we traced the profiles of the trio in relation to Mathematical Proof and Demonstration. Then we investigated the geometric thinking and the mathematical proof and demonstration used by the trio of students in the pencil and paper and GeoGebra environments. For such, we used discussions around the level of geometrical thinking proposed by Parzysz (2006) and the type of proofs proposed by Balacheff (2000) and Nasser and Tinoco (2003). From our research results we could conclude that the trio of students could not develop the justifications or proofs, once they did not understand what are mathematical proof and demonstration are, in their essays they understand mathematical proofs as bimestrial evaluations applied by the mathematics teacher. Moreover, the mathematical proofs performed by these students were in accordance with naive empiricism, pragmatic proof (Balacheff, 2000) and graphic justification (Nassar and Tinoco, 2003). In this way, when we observed the students geometrical thinking (Parzysz, 2006) we noted that it fits into two levels of the non-axiomatic Geometry: the Concrete Geomety (G0) and the Spatio-Graphique Geometry (G1), once these students used drawings to justify their affirmations, as the validation of the affirmation was done by the trio. We believe that if in Mathematic classes the teachers contemplate mathematical proof and demonstration, respecting the level of education, the degree of knowledge and maturity of the students, they could strongly contribute to the process of teaching and learning Mathematics and geometrical thinking, once the students would be led to reflect, justify, prove and demonstrate their ideas.
Nossa pesquisa investigou que tipo de provas, demonstrações matemáticas e nível de pensamento geométrico de alunos do 2º Ano do Ensino Médio podem ocorrer a partir de uma proposta didática nos ambientes lápis e papel e GeoGebra. Como pesquisa qualitativa, e estudo de caso, utilizamos como instrumentos redação com o tema Provas e Demonstrações Matemáticas, proposta didática desenvolvida por uma equipe de cinco pessoas que trabalhou de forma colaborativa inserida no Projeto CAPES/OBEDUC/UFMS/UEPB/UFAL Edital 2012, notas de campo, observação participante, gravações em áudio e fotos. Elaboramos uma proposta didática com 18 atividades, dividida em quatro partes, que incentivam alunos a refletirem, justificarem, provarem e demonstrarem. A aplicação dessa proposta se deu em julho de 2015 aos alunos do 2º Ano do Ensino Médio de uma escola pública na cidade de Areia, Paraíba. Para isso, os alunos se agruparam em duplas e um trio e a coleta dos dados se deu em três momentos. No primeiro momento, aplicamos a redação, revisamos com os alunos ângulos, triângulos e teoremas e trabalhamos com eles o aplicativo GeoGebra. No segundo momento, aplicamos as Partes I e II da proposta com 8 atividades sobre Teorema de Pitágoras e 3 atividades sobre Teorema da Soma dos Ângulos Internos de um Triângulo, respectivamente. No terceiro momento, aplicamos a Parte III, com 2 questões sobre o Teorema do Ângulo Externo e a Parte IV, com 5 questões à serem trabalhadas no aplicativo GeoGebra sobre o Teorema de Pitágoras e Teorema da Soma dos Ângulos Internos de um Triângulo. Em nossa pesquisa analisamos o trabalho desenvolvido pelo trio de alunos, uma vez que foram ricos na tentativa de r esponder a todas as perguntas/atividades. Analisamos a Atividade 8 da Parte I, as Atividades 1 e 2 da Parte II e todas as Atividades da Parte IV, totalizando em 8 questões. Utilizamos o método de triangulação de dados para nosso estudo de caso e, primeiramente, traçamos o perfil do trio de alunos com relação às Provas e Demonstrações Matemáticas. Em seguida, investigamos o pensamento geométrico e as provas e demonstrações matemáticas utilizadas pelo trio de alunos nos ambientes lápis e papel e GeoGebra. Para isso, utilizamos as discussões sobre os níveis do pensamento geométrico propostos por Parzysz (2006) e tipos de provas propostos por Balacheff (2000) e Nasser e Tinoco (2003). A partir de nossos resultados pudemos concluir que o trio de alunos não conseguiu desenvolver suas justificativas nem provas, uma vez que não entendem o que vem a ser provas e demonstrações matemáticas, e em suas redações percebemos que estes alunos tratam provas matemáticas como as avaliações aplicadas bimestralmente pelo professor de Matemática. Além disso, as provas matemáticas realizadas por estes alunos se enquadram no empirismo ingênuo, prova pragmática (Balacheff, 2000) e justificativa gráfica (Nasser e Tinoco, 2003). Dessa forma, quando observamos o pensamento geométrico (Parzysz, 2006) destes alunos, notamos que se enquadra nos dois níveis da Geometria não axiomática: a Geometria Concreta (G0) e a Geometria Spatio-Graphique (G1), uma vez que estes alunos se utilizam de desenhos para justificar suas afirmações, como também a validação das afirmações foi feita pela percepção do trio. Acreditamos que se nas aulas de Matemática os professores contemplassem provas e demonstrações matemáticas, respeitando o nível de escolaridade, o grau de conhecimento e a maturidade dos alunos, contribuiriam fortemente para o processo de ensino e aprendizagem da Matemática e do pensamento geométrico, uma vez que os alunos seriam levados a refletir, justificar, provar e demonstrar suas ideias.
Swanzy, Michael John. « Analysis and demonstration : a proof-of-concept compass star tracker ». Texas A&M University, 2005. http://hdl.handle.net/1969.1/4853.
Texte intégralPasini, Mirtes Fátima. « Argumentação e prova : explorações a partir da análise de uma coleção didática ». Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11282.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work is inserted the research project Argumentation and Proof in School Mathematics (AProvaME), which aims to study the teaching and learning of mathematical proofs during compulsory schooling. The main research question of this contribution to the project relates to how proof is treated in particular geometry topics in one collection of mathematics textbooks for secondary school students. More specifically, the study aims to identify how the passage from empiricism to deduction is contemplated in the textbook activities as well as to document the interventions and strategies necessary on the part of the mathematics teacher in order to manage this transition. The types of proofs in the classification of Balacheff (1988) and the functions of proof identified by de Villiers (2001) serve as the principle theoretical tools for these analyses. Following a survey of the activities related to proof and proving in topics related to the theorem of Pythagoras and properties of straight lines and triangles, teaching sequences based on these activities were developed with students from the 8th Grade of a secondary school within the public school system of the municipal of Jacupiranga in the State of São Paulo. The main findings of the study indicate that the teacher has at his or her disposal material that permit a broad approach to proof and proving, although the passage from exercises involving reliance on empirical manipulations for validation to the construction of proofs based on mathematical properties is not very explicitly addressed, with the result that intense teacher intervention is necessary at this point. A particular difficulty faced by the teacher is knowing how to intervene without assuming responsibility for the resolution of the task in question. Finally, a dynamic geometry activity is presented, as an attempt to provide a learning situation which might enable students to engage more spontaneously in the transition from evidence-based arguments to valid mathematical proofs
Nosso trabalho está inserido no Projeto Argumentação e Prova na Matemática Escolar (AProvaME), que tem como objetivo estudar o ensino e aprendizagem de provas matemáticas na Educação Básica. A questão principal da pesquisa consiste em analisar o tratamento deste tema em determinados conteúdos geométricos de uma coleção de livros didáticos do Ensino Fundamental. Mais especificamente, o estudo busca identificar como a passagem do empirismo à dedução é contemplada nas atividades dos livros e quais as intervenções e estratégias necessárias por parte do professor para gerenciar essa passagem. Os tipos de prova na classificação de Balacheff (1988) e as funções de prova identificadas por De Villiers (2001) foram as principais ferramentas teóricas utilizadas para estas análises. Após um levantamento das atividades relacionadas à prova nos conteúdos Teorema de Pitágoras, Retas Paralelas e as propriedades dos Triângulos, seqüências baseadas nessas atividades foram desenvolvidas com alunos de 8.ª Série do Ensino Fundamental de uma escola pública no Município de Jacupiranga, do Estado da São Paulo. Concluímos que o professor tem à sua disposição material consistente para trabalhar com seus alunos, embora exista o problema na passagem brusca de exercícios empíricos em diversos níveis de verificação para as demonstrações formais, sendo necessária intervenção do professor por meio de revisões pertinentes, proporcionando ao aluno esclarecimentos para desenvolver uma atividade. A principal dificuldade para o professor foi interferir sem assumir a responsabilidade de resolver a situação em questão. Por fim, apresenta-se uma atividade no ambiente de geometria dinâmica, visando proporcionar uma transição mais espontânea entre argumentos baseados em evidência e argumentos baseados em propriedades matemáticas
Macmillan, Emily. « Argumentation and Proof : Investigating the Effect of Teaching Mathematical Proof on Students' Argumentation Skills ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517230.
Texte intégralHemmi, Kirsti. « Approaching Proof in a Community of Mathematical Practice ». Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1217.
Texte intégralOwen, Stephen G. « Finding and using analogies to guide mathematical proof ». Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27156.
Texte intégralAlmeida, Julio Cesar Porfirio de. « Argumentação e prova na matemática escolar do ensino básico : a soma das medidas dos ângulos internos de um triângulo ». Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11502.
Texte intégralMade available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2 Julio Cesar Porfirio de Almeida.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5) Previous issue date: 2007-05-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study is about the demonstration of amount of measure the internal angles of triangles made by 8th grade from Fundamental School and the First year of High School, from of resolution of two specified questions. This work intends to contribute with the Argumentation and Proof in School Mathematics project (AprovaME), that has as one of objectives the mapping of conceptions about teenager s argumentation and proofs in public and private schools of São Paulo (state) For this was made a questionnaire in two books, five questions of Algebra and with five questions of Geometry. They were given to 1998 pupils aged between 14 and 16 years. The two analyzed questions are in the Geometry notebook. After checking the given information, took out 50 pupils as sample, that answers were classified in four progressive levels according their form of argument used in evolution of the Pragmatic proof (first principles methods of verification) to the Intellectual proof (elaborations of reasoning from logical-deduction nature and the production of explanation characterized as mathematics demonstration). In the following phase these pupils were put in groups according with the types of answers presented, to do the individual interviews aiming explanations about their choose. Finish the work a conclusive survey based in the results of the analysis, where are suggested forms of approach of subject Proofs and Demonstrations in the classroom, contemplating the execution of dynamic activities that give privilege the construction of mathematically consistent argument based in the expression of generalized reasoning
Este estudo trata da demonstração da soma da medida dos ângulos internos de um triângulo por alunos da oitava série do Ensino Fundamental e da primeira série do Ensino Médio, a partir da resolução de duas questões específicas. Procura contribuir com o Projeto Argumentação e Prova na Matemática Escolar (AprovaME), que tem como um de seus objetivos o mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas públicas e particulares do Estado de São Paulo. Para esse levantamento foi elaborado um questionário contendo, em dois cadernos, cinco questões de Álgebra e cinco de Geometria, aplicados a 1998 alunos na faixa etária entre 14 e 16 anos. As duas questões analisadas estão inseridas no caderno de Geometria. Após a tabulação das informações coletadas, extraiu-se dessa população uma amostra de 50 alunos, cujas respostas foram classificadas em quatro níveis progressivos quanto às formas de validação dos argumentos empregados numa evolução da categoria Prova Pragmática (métodos rudimentares de verificação) à Prova Intelectual (elaboração de raciocínios de natureza lógico-dedutiva e produção de explicações caracterizadas como demonstrações matemáticas). Na etapa seguinte, esses alunos foram agrupados de acordo com os tipos de resposta apresentados para a realização de entrevistas individuais visando à obtenção de esclarecimentos adicionais sobre suas escolhas. Encerra o trabalho um panorama conclusivo baseado no resultado da análise em que são sugeridas formas de abordagem do tema Provas e Demonstrações em sala de aula, contemplando a realização de atividades dinâmicas que privilegiem a construção de argumentos matematicamente consistentes, fundamentados na expressão de raciocínios generalizadores
Van, de Merwe Chelsey Lynn. « Student Use of Mathematical Content Knowledge During Proof Production ». BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8474.
Texte intégralCramer, Marcos [Verfasser]. « Proof-checking mathematical texts in controlled natural language / Marcos Cramer ». Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1045276626/34.
Texte intégralTanswell, Fenner Stanley. « Proof, rigour and informality : a virtue account of mathematical knowledge ». Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10249.
Texte intégralLivres sur le sujet "Mathematical Proof and Demonstration"
G, Dhombres Jean, dir. Une histoire de l'imaginaire mathématique : Vers le théorème fondamental de l'algèbre et sa demonstration par Laplace en 1795. Paris : Hermann, 2011.
Trouver le texte intégral1957-, Taylor John, dir. 100% mathematical proof. Chichester : Wiley, 1996.
Trouver le texte intégralRowan, Garnier, dir. Understanding mathematical proof. Boca Raton : Taylor & Francis, 2014.
Trouver le texte intégralStirling, David S. G. Mathematical analysis and proof. 2e éd. Chichester, UK : Horwood Pub., 2009.
Trouver le texte intégralStirling, David S. G. Mathematical analysis and proof. 2e éd. Chichester, UK : Horwood Pub., 2009.
Trouver le texte intégralMathematical reasoning : Writing and proof. 2e éd. Upper Saddle River, N.J : Pearson Prentice Hall, 2007.
Trouver le texte intégralMathematical reasoning : Writing and proof. Upper Saddle River, N.J : Prentice Hall, 2003.
Trouver le texte intégralDragalin, Alʹbert Grigorʹevich. Mathematical intuitionism : Introduction to proof theory. Providence, R.I : American Mathematical Society, 1988.
Trouver le texte intégralHavil, Julian. Nonplussed ! : Mathematical proof of implausible ideas. Princeton, N.J : Princeton University Press, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Mathematical Proof and Demonstration"
Hebborn, J. E., et C. Plumpton. « Mathematical proof ». Dans Methods of Algebra, 42–53. London : Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-07670-3_4.
Texte intégralSchroeder, Severin. « Mathematical Proof ». Dans Wittgenstein on Mathematics, 141–88. New York, NY : Routledge, 2021. | Series : Wittgenstein’s thought and legacy : Routledge, 2020. http://dx.doi.org/10.4324/9781003056904-12.
Texte intégralHanna, Gila. « Mathematical Proof ». Dans Advanced Mathematical Thinking, 54–61. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_4.
Texte intégralInglis, Matthew, et Andrew Aberdein. « Diversity in Proof Appraisal ». Dans Mathematical Cultures, 163–79. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28582-5_10.
Texte intégralNicholson, Neil R. « Mathematical Induction ». Dans A Transition to Proof, 171–220. Boca Raton : CRC Press, Taylor & Francis Group, 2018. : Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429259838-4.
Texte intégralLopez-Escobar, E. G. K. « Proof functional connectives ». Dans Methods in Mathematical Logic, 208–21. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0075313.
Texte intégralGorenstein, Daniel, Richard Lyons et Ronald Solomon. « Outline of proof ». Dans Mathematical Surveys and Monographs, 79–139. Providence, Rhode Island : American Mathematical Society, 1994. http://dx.doi.org/10.1090/surv/040.1/02.
Texte intégralMason, John, et Gila Hanna. « Values in Caring for Proof ». Dans Mathematical Cultures, 235–57. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28582-5_14.
Texte intégralAlibert, Daniel, et Michael Thomas. « Research on Mathematical Proof ». Dans Advanced Mathematical Thinking, 215–30. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_13.
Texte intégralZambrana Castañeda, Guillermo. « Wittgenstein On Mathematical Proof ». Dans Mexican Studies in the History and Philosophy of Science, 235–48. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0109-4_15.
Texte intégralActes de conférences sur le sujet "Mathematical Proof and Demonstration"
Kawai, Toshio, Yoshiro Mihira, Makoto Sato et Maki Hayashi. « Basis of universal existence of 1/f fluctuation— Mathematical proof and numerical demonstrations ». Dans Noise in physical systems and 1/. AIP, 1993. http://dx.doi.org/10.1063/1.44625.
Texte intégralGulen, S. Can, et Raub W. Smith. « A Simple Mathematical Approach to Data Reconciliation in a Single-Shaft Combined-Cycle System ». Dans ASME Turbo Expo 2006 : Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90145.
Texte intégralSundaresan, Vishnu Baba, et Donald J. Leo. « Experimental Investigation for Chemo-Mechanical Actuation Using Biological Transport Mechanisms ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81366.
Texte intégralMalak, Richard J., Lina Tucker et Christiaan J. J. Paredis. « Composing Tradeoff Models for Multi-Attribute System-Level Decision Making ». Dans ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49970.
Texte intégralAmirudin, Mochammad, Yusuf Fuad et Pradnyo Wijayanti. « Studentsr Proof Schemes for Disproving Mathematical Proposition ». Dans Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018). Paris, France : Atlantis Press, 2018. http://dx.doi.org/10.2991/miseic-18.2018.25.
Texte intégralMacKenzie, Donald W. « Computers and the Sociology of Mathematical Proof ». Dans 3rd BCS-FACS Northern Formal Methods Workshop. BCS Learning & Development, 1998. http://dx.doi.org/10.14236/ewic/nfm1998.13.
Texte intégralGurevich, Shagmar. « Proof of the Kurlberg-Rudnick Rate Conjecture ». Dans p-ADIC MATHEMATICAL PHYSICS : 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193112.
Texte intégralSpadaccini, Louis, Gregory Tillman, James Gentry, Alexander Chen et Tim Edwards. « Fuel Stabilization Unit Proof of Concept Engine Demonstration ». Dans 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5157.
Texte intégralCahit, I. « A Victorian Age Proof of the Four Color Theorem ». Dans ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525112.
Texte intégralMueller, Juergen, Stephen Vargo, David Bame, Dennis Fitzgerald et William Tang. « Proof-of-concept demonstration of a micro-isolation valve ». Dans 35th Joint Propulsion Conference and Exhibit. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2726.
Texte intégralRapports d'organisations sur le sujet "Mathematical Proof and Demonstration"
Farmer, W. M., J. D. Guttman et F. J. Thayer. IMPS : An Interactive Mathematical Proof System. Fort Belvoir, VA : Defense Technical Information Center, juillet 1991. http://dx.doi.org/10.21236/ada243162.
Texte intégralCasagranda, A., D. S. Stafford, G. Pastore, R. L. Williamson, B. W. Spencer et J. D. Hales. UFD Proof-of-Concept Demonstration. Office of Scientific and Technical Information (OSTI), juin 2017. http://dx.doi.org/10.2172/1408525.
Texte intégralFletcher, B. E. Underwater Security Vehicle Proof of Concept Demonstration. Fort Belvoir, VA : Defense Technical Information Center, mars 1993. http://dx.doi.org/10.21236/ada264713.
Texte intégralChawda, P. V. Proof-of-Concept Demonstration Results for Robotic Visual Servo Controllers. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/885667.
Texte intégralRhodes, E. A., D. L. Bowers, R. E. Boyar et C. E. Dickerman. Advanced concept proof-of-principle demonstration : Switchable radioactive neutron source. Office of Scientific and Technical Information (OSTI), octobre 1995. http://dx.doi.org/10.2172/197135.
Texte intégralHablanian, David A., Michael Bryant, Nelson Carbonell, Allan Chertok et Paul McTaggart. Modular Aircraft Support System (MASS) Proof-of-Concept Demonstrator Field Demonstration. Fort Belvoir, VA : Defense Technical Information Center, octobre 2001. http://dx.doi.org/10.21236/ada413306.
Texte intégralMosallaei, Hossein. Realization of Metamaterial-Based Devices : Mathematical Theory and Physical Demonstration. Fort Belvoir, VA : Defense Technical Information Center, février 2010. http://dx.doi.org/10.21236/ada515521.
Texte intégralBAIDE, D. G. TANK 241-U-107 SALTCAKE DISSOLUTION PROOF OF CONCEPT RETRIEVAL DEMONSTRATION OPERATIONAL RESULTS. Office of Scientific and Technical Information (OSTI), juin 2003. http://dx.doi.org/10.2172/812316.
Texte intégralPeter, F. J., et G. R. Laguna. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration. Office of Scientific and Technical Information (OSTI), septembre 1996. http://dx.doi.org/10.2172/383609.
Texte intégralHu, P. S. Proof of Concept of ITS as An Alternative Data Resource : A Demonstration Project of Florida and New York Data. Office of Scientific and Technical Information (OSTI), décembre 2001. http://dx.doi.org/10.2172/814552.
Texte intégral