Thèses sur le sujet « Mathematical Proof and Demonstration »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Mathematical Proof and Demonstration ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Lima, Marcella Luanna da Silva. « Sobre pensamento geomátrico, provas e demonstrações matemáticas de alunos do 2º ano do Ensino Médio nos ambientes Lápis e Papel e Geogebra ». Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2336.
Texte intégralApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:00Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:11Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Made available in DSpace on 2016-07-21T20:47:11Z (GMT). No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5) Previous issue date: 2015-12-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Our research work aimed to investigate what type of proof, mathematical demonstration and level of geometrical thinking can occur from a didactic proposal within pencil, paper and GeoGebra environments. As qualitative research and study case, we used as instruments essays with Mathematical Proof and Demonstration themes, a didactic proposal developed by a team of five people who inserted worked collaboratively in the CAPES/OBEDUC/UFMS/UEPB/UFAL Project, field notes, participant observation, audios and photos. We elaborated a didactic proposal with eighteen activities, divided into four parts, which encouraged the students to reflect, justify, prove and demonstrate. The proposal application was carried out in July 2015 with High School 2nd year students of a public school in the town of Areia, Paraíba. For such, the students organized themselves in couples and one trio and the data collection happened in three moments. In the first moment we applied the essay, revised angles, triangles and theorems with the students and worked GeoGebra application with them. In the second moment we applied Parts I and II of the proposal with eight activities on Pythagoras Theorem and three activities on Sum of the Internal Angles of a Triangle Theorem, respectively. In the third moment we applied Part III, with two questions on External Angle Theorem and Part IV, with five question to be worked with the GeoGebra application on Pythagoras Theorem and Sum of the Internal Angles of a Triangle Theorem. In our research work we analyzed the work developed by the trio of students, once they were great in responding all the questions/activities. We analyzed Activity 8 of Part I, Activity 1 and 2 of Part II and all Activities of Part IV, totalizing in eight questions. We used the triangulation method for our study case and, firstly, we traced the profiles of the trio in relation to Mathematical Proof and Demonstration. Then we investigated the geometric thinking and the mathematical proof and demonstration used by the trio of students in the pencil and paper and GeoGebra environments. For such, we used discussions around the level of geometrical thinking proposed by Parzysz (2006) and the type of proofs proposed by Balacheff (2000) and Nasser and Tinoco (2003). From our research results we could conclude that the trio of students could not develop the justifications or proofs, once they did not understand what are mathematical proof and demonstration are, in their essays they understand mathematical proofs as bimestrial evaluations applied by the mathematics teacher. Moreover, the mathematical proofs performed by these students were in accordance with naive empiricism, pragmatic proof (Balacheff, 2000) and graphic justification (Nassar and Tinoco, 2003). In this way, when we observed the students geometrical thinking (Parzysz, 2006) we noted that it fits into two levels of the non-axiomatic Geometry: the Concrete Geomety (G0) and the Spatio-Graphique Geometry (G1), once these students used drawings to justify their affirmations, as the validation of the affirmation was done by the trio. We believe that if in Mathematic classes the teachers contemplate mathematical proof and demonstration, respecting the level of education, the degree of knowledge and maturity of the students, they could strongly contribute to the process of teaching and learning Mathematics and geometrical thinking, once the students would be led to reflect, justify, prove and demonstrate their ideas.
Nossa pesquisa investigou que tipo de provas, demonstrações matemáticas e nível de pensamento geométrico de alunos do 2º Ano do Ensino Médio podem ocorrer a partir de uma proposta didática nos ambientes lápis e papel e GeoGebra. Como pesquisa qualitativa, e estudo de caso, utilizamos como instrumentos redação com o tema Provas e Demonstrações Matemáticas, proposta didática desenvolvida por uma equipe de cinco pessoas que trabalhou de forma colaborativa inserida no Projeto CAPES/OBEDUC/UFMS/UEPB/UFAL Edital 2012, notas de campo, observação participante, gravações em áudio e fotos. Elaboramos uma proposta didática com 18 atividades, dividida em quatro partes, que incentivam alunos a refletirem, justificarem, provarem e demonstrarem. A aplicação dessa proposta se deu em julho de 2015 aos alunos do 2º Ano do Ensino Médio de uma escola pública na cidade de Areia, Paraíba. Para isso, os alunos se agruparam em duplas e um trio e a coleta dos dados se deu em três momentos. No primeiro momento, aplicamos a redação, revisamos com os alunos ângulos, triângulos e teoremas e trabalhamos com eles o aplicativo GeoGebra. No segundo momento, aplicamos as Partes I e II da proposta com 8 atividades sobre Teorema de Pitágoras e 3 atividades sobre Teorema da Soma dos Ângulos Internos de um Triângulo, respectivamente. No terceiro momento, aplicamos a Parte III, com 2 questões sobre o Teorema do Ângulo Externo e a Parte IV, com 5 questões à serem trabalhadas no aplicativo GeoGebra sobre o Teorema de Pitágoras e Teorema da Soma dos Ângulos Internos de um Triângulo. Em nossa pesquisa analisamos o trabalho desenvolvido pelo trio de alunos, uma vez que foram ricos na tentativa de r esponder a todas as perguntas/atividades. Analisamos a Atividade 8 da Parte I, as Atividades 1 e 2 da Parte II e todas as Atividades da Parte IV, totalizando em 8 questões. Utilizamos o método de triangulação de dados para nosso estudo de caso e, primeiramente, traçamos o perfil do trio de alunos com relação às Provas e Demonstrações Matemáticas. Em seguida, investigamos o pensamento geométrico e as provas e demonstrações matemáticas utilizadas pelo trio de alunos nos ambientes lápis e papel e GeoGebra. Para isso, utilizamos as discussões sobre os níveis do pensamento geométrico propostos por Parzysz (2006) e tipos de provas propostos por Balacheff (2000) e Nasser e Tinoco (2003). A partir de nossos resultados pudemos concluir que o trio de alunos não conseguiu desenvolver suas justificativas nem provas, uma vez que não entendem o que vem a ser provas e demonstrações matemáticas, e em suas redações percebemos que estes alunos tratam provas matemáticas como as avaliações aplicadas bimestralmente pelo professor de Matemática. Além disso, as provas matemáticas realizadas por estes alunos se enquadram no empirismo ingênuo, prova pragmática (Balacheff, 2000) e justificativa gráfica (Nasser e Tinoco, 2003). Dessa forma, quando observamos o pensamento geométrico (Parzysz, 2006) destes alunos, notamos que se enquadra nos dois níveis da Geometria não axiomática: a Geometria Concreta (G0) e a Geometria Spatio-Graphique (G1), uma vez que estes alunos se utilizam de desenhos para justificar suas afirmações, como também a validação das afirmações foi feita pela percepção do trio. Acreditamos que se nas aulas de Matemática os professores contemplassem provas e demonstrações matemáticas, respeitando o nível de escolaridade, o grau de conhecimento e a maturidade dos alunos, contribuiriam fortemente para o processo de ensino e aprendizagem da Matemática e do pensamento geométrico, uma vez que os alunos seriam levados a refletir, justificar, provar e demonstrar suas ideias.
Swanzy, Michael John. « Analysis and demonstration : a proof-of-concept compass star tracker ». Texas A&M University, 2005. http://hdl.handle.net/1969.1/4853.
Texte intégralPasini, Mirtes Fátima. « Argumentação e prova : explorações a partir da análise de uma coleção didática ». Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11282.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This work is inserted the research project Argumentation and Proof in School Mathematics (AProvaME), which aims to study the teaching and learning of mathematical proofs during compulsory schooling. The main research question of this contribution to the project relates to how proof is treated in particular geometry topics in one collection of mathematics textbooks for secondary school students. More specifically, the study aims to identify how the passage from empiricism to deduction is contemplated in the textbook activities as well as to document the interventions and strategies necessary on the part of the mathematics teacher in order to manage this transition. The types of proofs in the classification of Balacheff (1988) and the functions of proof identified by de Villiers (2001) serve as the principle theoretical tools for these analyses. Following a survey of the activities related to proof and proving in topics related to the theorem of Pythagoras and properties of straight lines and triangles, teaching sequences based on these activities were developed with students from the 8th Grade of a secondary school within the public school system of the municipal of Jacupiranga in the State of São Paulo. The main findings of the study indicate that the teacher has at his or her disposal material that permit a broad approach to proof and proving, although the passage from exercises involving reliance on empirical manipulations for validation to the construction of proofs based on mathematical properties is not very explicitly addressed, with the result that intense teacher intervention is necessary at this point. A particular difficulty faced by the teacher is knowing how to intervene without assuming responsibility for the resolution of the task in question. Finally, a dynamic geometry activity is presented, as an attempt to provide a learning situation which might enable students to engage more spontaneously in the transition from evidence-based arguments to valid mathematical proofs
Nosso trabalho está inserido no Projeto Argumentação e Prova na Matemática Escolar (AProvaME), que tem como objetivo estudar o ensino e aprendizagem de provas matemáticas na Educação Básica. A questão principal da pesquisa consiste em analisar o tratamento deste tema em determinados conteúdos geométricos de uma coleção de livros didáticos do Ensino Fundamental. Mais especificamente, o estudo busca identificar como a passagem do empirismo à dedução é contemplada nas atividades dos livros e quais as intervenções e estratégias necessárias por parte do professor para gerenciar essa passagem. Os tipos de prova na classificação de Balacheff (1988) e as funções de prova identificadas por De Villiers (2001) foram as principais ferramentas teóricas utilizadas para estas análises. Após um levantamento das atividades relacionadas à prova nos conteúdos Teorema de Pitágoras, Retas Paralelas e as propriedades dos Triângulos, seqüências baseadas nessas atividades foram desenvolvidas com alunos de 8.ª Série do Ensino Fundamental de uma escola pública no Município de Jacupiranga, do Estado da São Paulo. Concluímos que o professor tem à sua disposição material consistente para trabalhar com seus alunos, embora exista o problema na passagem brusca de exercícios empíricos em diversos níveis de verificação para as demonstrações formais, sendo necessária intervenção do professor por meio de revisões pertinentes, proporcionando ao aluno esclarecimentos para desenvolver uma atividade. A principal dificuldade para o professor foi interferir sem assumir a responsabilidade de resolver a situação em questão. Por fim, apresenta-se uma atividade no ambiente de geometria dinâmica, visando proporcionar uma transição mais espontânea entre argumentos baseados em evidência e argumentos baseados em propriedades matemáticas
Macmillan, Emily. « Argumentation and Proof : Investigating the Effect of Teaching Mathematical Proof on Students' Argumentation Skills ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517230.
Texte intégralHemmi, Kirsti. « Approaching Proof in a Community of Mathematical Practice ». Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1217.
Texte intégralOwen, Stephen G. « Finding and using analogies to guide mathematical proof ». Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27156.
Texte intégralAlmeida, Julio Cesar Porfirio de. « Argumentação e prova na matemática escolar do ensino básico : a soma das medidas dos ângulos internos de um triângulo ». Pontifícia Universidade Católica de São Paulo, 2007. https://tede2.pucsp.br/handle/handle/11502.
Texte intégralMade available in DSpace on 2016-08-25T17:25:36Z (GMT). No. of bitstreams: 2 Julio Cesar Porfirio de Almeida.pdf.jpg: 1943 bytes, checksum: cc73c4c239a4c332d642ba1e7c7a9fb2 (MD5) Julio Cesar Porfirio de Almeida.pdf: 1456447 bytes, checksum: 58dfec1164eb0113da8d0d62e33bc115 (MD5) Previous issue date: 2007-05-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study is about the demonstration of amount of measure the internal angles of triangles made by 8th grade from Fundamental School and the First year of High School, from of resolution of two specified questions. This work intends to contribute with the Argumentation and Proof in School Mathematics project (AprovaME), that has as one of objectives the mapping of conceptions about teenager s argumentation and proofs in public and private schools of São Paulo (state) For this was made a questionnaire in two books, five questions of Algebra and with five questions of Geometry. They were given to 1998 pupils aged between 14 and 16 years. The two analyzed questions are in the Geometry notebook. After checking the given information, took out 50 pupils as sample, that answers were classified in four progressive levels according their form of argument used in evolution of the Pragmatic proof (first principles methods of verification) to the Intellectual proof (elaborations of reasoning from logical-deduction nature and the production of explanation characterized as mathematics demonstration). In the following phase these pupils were put in groups according with the types of answers presented, to do the individual interviews aiming explanations about their choose. Finish the work a conclusive survey based in the results of the analysis, where are suggested forms of approach of subject Proofs and Demonstrations in the classroom, contemplating the execution of dynamic activities that give privilege the construction of mathematically consistent argument based in the expression of generalized reasoning
Este estudo trata da demonstração da soma da medida dos ângulos internos de um triângulo por alunos da oitava série do Ensino Fundamental e da primeira série do Ensino Médio, a partir da resolução de duas questões específicas. Procura contribuir com o Projeto Argumentação e Prova na Matemática Escolar (AprovaME), que tem como um de seus objetivos o mapeamento das concepções sobre argumentação e prova de alunos adolescentes em escolas públicas e particulares do Estado de São Paulo. Para esse levantamento foi elaborado um questionário contendo, em dois cadernos, cinco questões de Álgebra e cinco de Geometria, aplicados a 1998 alunos na faixa etária entre 14 e 16 anos. As duas questões analisadas estão inseridas no caderno de Geometria. Após a tabulação das informações coletadas, extraiu-se dessa população uma amostra de 50 alunos, cujas respostas foram classificadas em quatro níveis progressivos quanto às formas de validação dos argumentos empregados numa evolução da categoria Prova Pragmática (métodos rudimentares de verificação) à Prova Intelectual (elaboração de raciocínios de natureza lógico-dedutiva e produção de explicações caracterizadas como demonstrações matemáticas). Na etapa seguinte, esses alunos foram agrupados de acordo com os tipos de resposta apresentados para a realização de entrevistas individuais visando à obtenção de esclarecimentos adicionais sobre suas escolhas. Encerra o trabalho um panorama conclusivo baseado no resultado da análise em que são sugeridas formas de abordagem do tema Provas e Demonstrações em sala de aula, contemplando a realização de atividades dinâmicas que privilegiem a construção de argumentos matematicamente consistentes, fundamentados na expressão de raciocínios generalizadores
Van, de Merwe Chelsey Lynn. « Student Use of Mathematical Content Knowledge During Proof Production ». BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8474.
Texte intégralCramer, Marcos [Verfasser]. « Proof-checking mathematical texts in controlled natural language / Marcos Cramer ». Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1045276626/34.
Texte intégralTanswell, Fenner Stanley. « Proof, rigour and informality : a virtue account of mathematical knowledge ». Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10249.
Texte intégralOlivero, Federica. « The proving process within a dynamic geometry environment ». Thesis, University of Bristol, 2003. http://hdl.handle.net/1983/ed52d690-e35f-4bd8-8a3a-74a8b7de5f7c.
Texte intégralWallen, Lincoln A. « Automated proof search in non-classical logics : efficient matrix proof methods for modal and intuitionistic logics ». Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/6600.
Texte intégralNascimento, Anderson de Araújo. « Análise dos tipos de provas matemáticas e pensamento geométrico de alunos do 1º ano do Ensino Médio ». Universidade Estadual da Paraíba, 2017. http://tede.bc.uepb.edu.br/jspui/handle/tede/2907.
Texte intégralApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2017-12-06T18:38:49Z (GMT) No. of bitstreams: 2 PDF - Anderson de Araújo Nascimento.pdf: 46622103 bytes, checksum: d60f09812020a13c3cb13ccf0c932c21 (MD5) Produto - Anderson de Araújo Nascimento.pdf: 2173471 bytes, checksum: a461965985df3647cd94256a818a4661 (MD5)
Made available in DSpace on 2017-12-06T18:38:49Z (GMT). No. of bitstreams: 2 PDF - Anderson de Araújo Nascimento.pdf: 46622103 bytes, checksum: d60f09812020a13c3cb13ccf0c932c21 (MD5) Produto - Anderson de Araújo Nascimento.pdf: 2173471 bytes, checksum: a461965985df3647cd94256a818a4661 (MD5) Previous issue date: 2017-08-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The present research work investigated the level of geometric thinking and the types of mathematical proofs by 1st year high school students from the application of a Didactic Proposal. This research was constituted as a qualitative one, and as case study, having instruments of the application an essay with the theme Proofs and Mathematical Demonstrations, Didactic Proposal developed by a team of five members who worked collaboratively, inserted in the Project CAPES/OBEDUC/UFMS/UEPB/UFAL Edital 2012, participant observation and audio recording. We developed the didactic proposal with 18 activities, divided into four parts, which stimulated students to reflect, justify, prove and demonstrate. The application of this proposal occurred in June 2015 for 1st year high school students in a public school in the city of Areia, Paraíba. Our research took place in three moments. In the first moment, we apply the essay on the subject mathematical proofs and demonstrations. In the second moment we did a didactic intervention approaching definitions, theorems, proofs and mathematical demonstrations with the objective of taking to the students this knowledge. In the third moment, Part I and II of the Didactic Proposal were applied, involving activities to conjecture and demonstrate the Pythagorean Theorem, Internal Angle Sum Theorem and External Angle Theorem. This proposal helped in the investigation of the mathematical knowledge of the 1st year high school students, divided into 8 pairs and one trio, chosen freely. The two pairs of students who achieved the best performance in our Didactic Proposal were chosen for our case study and the one of better performance had its dialogue recorded and transcribed as a source of evidence of our case study. In our research we analyzed the answers given by the two pairs on Activities 1 and 3 (Part II) and Activity 2 (Part III), totaling in 3 questions. We used the data triangulation method for our case study. Firstly, we draw the profile of the two pairs of students in relation to Proofs and Mathematical Demonstrations. Next, we investigate the types of mathematical proofs used by them and their geometric thinking. To do so, we use discussions about the levels of geometric thinking proposed by Van Hiele and the types of evidence. From our results we can conclude that the pairs of students were able to develop informal justifications, that is, informal proofs. Thus, the pairs presented pragmatic evidence and the types of evidence Pragmatic Justification and Crucial Example. Regarding the geometric thinking proposed by Van Hiele, only one pair could be classified in one of the levels of development of geometric thinking, Level 3, informal deduction. Therefore, we come to the end of this research convinced that it is necessary to start working mathematical proofs and demonstrations in the basic education level, adapting its teaching to the degree of maturity and to the mathematical knowledge of the students, since our results point out that this subject is not approached properly in the classroom.
A presente pesquisa investigou o nível do pensamento geométrico e os tipos de provas matemáticas de alunos do 1º ano do Ensino Médio a partir da aplicação de uma Proposta Didática. Esta pesquisa se constituiu como qualitativa, e estudo de caso, tendo como instrumentos a aplicação de uma redação com o tema Provas e Demonstrações Matemáticas, Proposta Didática desenvolvida por uma equipe de cinco membros que trabalhou de forma colaborativa, inserida no Projeto CAPES/OBEDUC/UFMS/UEPB/ UFAL Edital 2012, observação participante e gravação em audio do diálgo de umas das duplas participantes da pesquisa. Elaboramos uma proposta didática com 18 atividades, dividida em quatro partes, que estimulavam aos alunos refletirem, justificarem, provarem e demonstrarem. A aplicação dessa proposta se deu em junho de 2015 para alunos do 1º ano do Ensino Médio de uma escola pública da cidade de Areia, Paraíba. Nossa pesquisa se deu em três momentos. No primeiro momento, aplicamos a redação sobre o tema provas e demonstrações matemáticas. No segundo momento realizamos uma intervenção didática abordando definições, teoremas, provas e demonstrações matemáticas com o objetivo de levar aos alunos esses conhecimentos. No terceiro momento foi aplicado a Parte I e II da Proposta Didática, envolvendo atividades de conjecturar e demonstrar o Teorema de Pitágoras, Teorema da Soma dos Ângulos Internos e Teorema dos Ângulo Externo. Essa proposta auxiliou na investigação do conhecimento matemático dos alunos do 1º ano do Ensino Médio, divididos em 8 duplas e um trio, escolhidos livremente. As duas duplas de alunos que obteveram melhores desempenhos em nossa Proposta Didática foram escolhidas para o nosso estudo de caso e a de melhor desenpenho teve seu diálogo gravado e transcrito como fonte de evidência de nosso estudo de caso. Em nossa pesquisa analisamos as respostas dadas pelas duas duplas sobre Atividades 1 e 3 (Parte II) e Atividade 2 (Parte III), totalizando em 3 questões. Utilizamos o método de triângulação de dados para nosso estudo de caso. Primeiramente, traçamos o perfil das duas duplas de alunas com relação às Provas e Demonstrações Matemáticas. Em seguida, investigamos os tipos de provas matemáticas utilizadas por elas e o seu pensamento geométrico. Para tanto, utilizamos as discussões sobre os níveis do pensamento geométrico proposto por Van Hiele e os tipos de provas. A partir de nossos resultados pudemos concluir que as duplas de alunas conseguiram desenvolver justificativas informais, ou seja, provas informais. Assim, as duplas apresentaram provas pragmáticas e os tipos de provas Justificativa Pragmática e Exemplo Crucial. Com relação ao pensamento geométrico proposto por Van Hiele, apenas uma dupla pôde ser classificada em um dos níveis de desenvolvimento do pensamento geométrico, o Nível 3, dedução informal. Portanto, chegamos ao final desta pesquisa convictos de que é preciso iniciar o trabalho das provas e demonstrações matemáticas na Educação Básica, adequando seu ensino ao grau de maturidade e aos conhecimentos matemáticos dos alunos, visto que nossos resultados apontam que esse tema não é abordado adequadamente em sala de aula.
Evans, Denis J., Debra J. Searles et Stephen R. Williams. « A simple mathematical proof of boltzmann's equal a priori probability hypothesis ». Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190362.
Texte intégralDickerson, David S. « High school mathematics teachers' understandings of the purposes of mathematical proof ». Related electronic resource : Current Research at SU : database of SU dissertations, recent titles available full text, 2008. http://wwwlib.umi.com/cr/syr/main.
Texte intégralWomack, Catherine A. « The crucial role of proof--a classical defense against mathematical empiricism ». Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12678.
Texte intégralEvans, Denis J., Debra J. Searles et Stephen R. Williams. « A simple mathematical proof of boltzmann's equal a priori probability hypothesis ». Diffusion fundamentals 11 (2009) 57, S. 1-8, 2009. https://ul.qucosa.de/id/qucosa%3A14022.
Texte intégralMeikle, Laura Isabel. « Intuition in formal proof : a novel framework for combining mathematical tools ». Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9663.
Texte intégralGawthorpe, Kateřina. « COMPETING CURRENCIES AS AN ALTERNATIVE SCENARIO TO LEGAL TENDER CLAUSE : MATHEMATICAL PROOF ». Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-197885.
Texte intégralDuff, Karen Malina. « What Are Some of the Common Traits in the Thought Processes of Undergraduate Students Capable of Creating Proof ? » Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1856.pdf.
Texte intégralGruver, John David. « Growth in Students' Conceptions of Mathematical Induction ». BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2166.
Texte intégralLiu, Yating. « Aspects of Mathematical Arguments that Influence Eighth Grade Students’ Judgment of Their Validity ». The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373894064.
Texte intégralGrudić, Gregory Z. « Iterative inverse kinematics with manipulator configuration control and proof of convergence ». Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/42018.
Texte intégralApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Lai, Lan-chee Nancy. « A study of secondary three students' proof writing in geometry ». Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17092292.
Texte intégralVincent, Jill. « Mechanical linkages, dynamic geometry software, and argumentation : supporting a classroom culture of mathematical proof / ». Connect to thesis, 2002. http://eprints.unimelb.edu.au/archive/00001399.
Texte intégralPlaxco, David Bryant. « Relating Understanding of Inverse and Identity to Engagement in Proof in Abstract Algebra ». Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56587.
Texte intégralPh. D.
Kanellos, Ioannis. « Secondary students' proof schemes during the first encounters with formal mathematical reasoning : appreciation, fluency and readiness ». Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/49759/.
Texte intégralVasquez, Jose Eduardo. « Wiener-Lévy Theorem : Simple proof of Wiener's lemma and Wiener-Lévy theorem ». Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104868.
Texte intégralYee, Sean P. « Students' Metaphors for Mathematical Problem Solving ». Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1340197978.
Texte intégralBraendlein, Marcel. « Lithographic fabrication, electrical characterization and proof-of-concept demonstration of sensor circuits comprising organic electrochemical transistors for in vitro and in vivo diagnostics ». Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEM007/document.
Texte intégralDue to their outstanding mechanical, electrical and chemical properties, organic electronic devices based on conducting polymers can bridge the gap between the rigid silicon based read-out electronics and the soft biological environment and will have a huge impact on the medical healthcare sector. The recent advances in the field of organic semiconductors and microelectronics gave rise to a new discipline termed bioelectronics. This discipline deals with sensors for diagnostic purposes, ranging from metabolite detection and DNA recognition all the way to single neuronal firing events, and actuators for therapeutic purposes, through for example active local drug delivery inside the body or deep brain stimulation to cure neurological disorder. The use of organic materials such as the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in the field of bioelectronics has brought about a variety of outstanding electronic biomedical devices, such as the organic electrochemical transistor (OECT), that have been implemented for both in vitro and in vivo applications. The present manuscript gives a detailed explanation of the fabrication, functionalization and characterization of OECTs based on PEDOT:PSS. To be able to intercept this sensor element with traditional biomedical recording systems, the OECT is implemented into simple circuit layouts such as a voltage amplifier or a Wheatstone bridge. These sensor circuits are then applied to real-life biomedical challenges, such as electrocardiographic recordings or metabolite detection in tumor cell cultures, to demonstrate their applicability as well as their limitations
McClure, Bruce Alexander Carleton University Dissertation Engineering Mechanical and Aerospace. « The TEther LABoratory demonstration system (TE-LAB) ; design, operation and mathematical model validation using an eigenvalue approach ». Ottawa, 1995.
Trouver le texte intégralTsiatouras, Vasilis. « Mathematics and the USSR : organising a discipline ». Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/19547.
Texte intégralLai, Lan-chee Nancy, et 黎蘭芝. « A study of secondary three students' proof writing in geometry ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31957936.
Texte intégralAlves, Thiago de Oliveira. « Lógica formal e sua aplicação na argumentação matemática ». Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/3248.
Texte intégralApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-07T13:56:24Z (GMT) No. of bitstreams: 1 thiagodeoliveiraalves.pdf: 655489 bytes, checksum: e3e858183683f82164e751d989a96b35 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-07T14:05:47Z (GMT) No. of bitstreams: 1 thiagodeoliveiraalves.pdf: 655489 bytes, checksum: e3e858183683f82164e751d989a96b35 (MD5)
Made available in DSpace on 2017-02-07T14:05:47Z (GMT). No. of bitstreams: 1 thiagodeoliveiraalves.pdf: 655489 bytes, checksum: e3e858183683f82164e751d989a96b35 (MD5) Previous issue date: 2016-07-18
O uso da Lógica é de fundamental importância no desenvolvimento de teorias matemáticas modernas, que buscam deduzir de axiomas e conceitos primitivos todo seu corpo de teoremas e consequências. O objetivo desta dissertação é descrever as ferramentas da Lógica Formal que possam ter aplicações imediatas nas demonstrações de conjecturas e teoremas, trazendo justificativa e significado para as técnicas dedutivas e argumentos normalmente utilizados na Matemática. Além de temas introdutórios sobre argumentação e âmbito da lógica, o trabalho todo é apresentado por método sistemático em busca de um critério formal que possa separar os argumentos válidos dos inválidos. Conclui-se que com uma boa preparação inicial no campo da Lógica Formal, o matemático iniciante possa ter uma referência sobre como proceder estrategicamente nos processos de provas de conjecturas e um conhecimento mais profundo ao entender os motivos da validade dos teoremas que encontrará ao se dedicar a sua área de formação.
TheuseofLogicisoffundamentalimportanceinthedevelopmentofmodernmathematical theories that seek deduce from axioms and primitive concepts all your body of theorems and consequences. The aim of this work is to describe the tools of Formal Logic that may have immediate applications in the statements of theorems and conjectures, bringing justification and meaning to the deductive techniques and arguments commonly used in Mathematics. In addition to introductory topics on argumentation and scope of Logic, all the work is presented by systematic method in search of a formal criterion that can separate the valid arguments of the invalids. It follows that with a good initial preparation in the field of Formal Logic, the novice mathematician could have a reference on how to strategically proceed in conjectures evidence processes and a deeper knowledge to understand the reasons for the validity of theorems found on their training area.
Sommerhoff, Daniel [Verfasser], et Stefan [Akademischer Betreuer] Ufer. « The individual cognitive resources underlying students' mathematical argumentation and proof skills : from theory to intervention / Daniel Sommerhoff ; Betreuer : Stefan Ufer ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1163949361/34.
Texte intégralSommerhoff, Daniel Verfasser], et Stefan [Akademischer Betreuer] [Ufer. « The individual cognitive resources underlying students' mathematical argumentation and proof skills : from theory to intervention / Daniel Sommerhoff ; Betreuer : Stefan Ufer ». München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://nbn-resolving.de/urn:nbn:de:bvb:19-226879.
Texte intégralLelay, Catherine. « Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée ». Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112096/document.
Texte intégralReal analysis is pervasive to many applications, if only because it is a suitable tool for modeling physical or socio-economical systems. As such, its support is warranted in proof assistants, so that the users have a way to formally verify mathematical theorems and correctness of critical systems. The Coq system comes with an axiomatization of standard real numbers and a library of theorems on real analysis. Unfortunately, this standard library is lacking some widely used results. For instance, the definitions of integrals and derivatives are based on dependent types, which make them cumbersome to use in practice. This thesis first describes various state-of-the-art libraries available in proof assistants. To palliate the inadequacies of the Coq standard library, we have designed a user-friendly formalization of real analysis: Coquelicot. An easier way of writing formulas and theorem statements is achieved by relying on total functions in place of dependent types for limits, derivatives, integrals, power series, and so on. To help with the proof process, the library comes with a comprehensive set of theorems that cover not only these notions, but also some extensions such as parametric integrals and asymptotic behaviors. Moreover, an algebraic hierarchy makes it possible to apply some of the theorems in a more generic setting, such as complex numbers or matrices. Coquelicot is a conservative extension of the classical analysis of Coq's standard library and we provide correspondence theorems between the two formalizations. We have exercised the library on several use cases: in an exam at university entry level, for the definitions and properties of Bessel functions, and for the solution of the one-dimensional wave equation
Boudjani, Nadira. « Aide à la construction et l'évaluation des preuves mathématiques déductives par les systèmes d'argumentation ». Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS060/document.
Texte intégralLearning deductive proofs is fundamental for mathematics education. Yet, many students have difficulties to understand and write deductive mathematical proofs which has severe consequences for problem solving as highlighted by several studies. According to the recent study of TIMSS (Trends in International Mathematics and Science Study), the level of students in mathematics is falling. students have difficulties to understand mathematics and more precisely to build and structure mathematical proofs.To tackle this problem, several approaches in mathematical didactics have used a social approach in classrooms where students are engaged in a debate and use argumentation in order to build proofs.The term "argumentation" in this context refers to the use of informal discussions in classrooms to allow students to publicly express claims and justify them to build proofs for a given problem. The underlying hypotheses are that argumentation: (i) enhances critical thinking and meta-cognitive skills such as self monitoring and self assessment; (ii) increases student's motivation by social interactions; and (iii) allows learning among students. From instructors' point of view, some difficulties arise with these approaches for assessment. In fact, the evaluation of outcomes -- that includes not only the final proof but also all intermediary steps and aborted attempts -- introduces an important work overhead.In this thesis, we propose a system for constructing and evaluating deductive mathematical proofs. The system has a twofold objective: (i) allow students to build deductive mathematical proofs using structured argumentative debate; (ii) help the instructors to evaluate these proofs and assess all intermediary steps in order to identify misconceptions and provide a constructive feedback to students. The system provides students with a structured framework to debate during construction of proofs using the proposed argumentation frameworks in artificial intelligence. These argumentation frameworks are also used in the analysis of the debate which will be used to represent the result in different forms in order to facilitate the evaluation to the instructors. The system has been implemented and evaluated experimentally by students in the construction of deductive proofs and instructors in the evaluation of these proofs
Dhaher, Yaser Yousef. « The Effect of a Modified Moore Method on Conceptualization of Proof Among College Students ». Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1197511801.
Texte intégralBubp, Kelly M. « To Prove or Disprove : The Use of Intuition and Analysis by Undergraduate Students to Decide on the Truth Value of Mathematical Statements and Construct Proofs and Counterexamples ». Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417178872.
Texte intégralMyers, Jeremy. « Computational Fluid Dynamics in a Terminal Alveolated Bronchiole Duct with Expanding Walls : Proof-of-Concept in OpenFOAM ». VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/5011.
Texte intégralVarella, Márcia. « Prova e demonstração na geometria analítica : uma análise das organizações didática e matemática em materiais didáticos ». Pontifícia Universidade Católica de São Paulo, 2010. https://tede2.pucsp.br/handle/handle/10844.
Texte intégralSecretaria da Educação do Estado de São Paulo
This study aims to analyze how the authors of teaching materials of high school have organized tasks proposals with proofs and demonstrations on content proposed of Analytic Geometry on 3rd series of high school. With a view to proposing some thoughts in this respect, we analyze the collections of textbooks approved by the National Program of textbook for high school (PNLEM/2009) and the notebooks bimonthly adopted by the Education Secretary of the State of São Paulo (SEESP/2009), made available to students and teachers, distinctly. We judge the relevance in analyzing these materials because we act in the public network of State of São Paulo aiming contributions that may occur. The analysis of these materials was carried out considering the tasks proposed on the content Analytic Geometry, limited to studying the equation of a line. The theoretical contribution that substantiate our analyses followed the assumptions of Anthropological Theory of didactic Yves Chevallard (1999) that focuses the study of praxeological organization mathematics and didactics designed for teaching and learning of Mathematics and the work of Nicolas Balacheff (1988), which aims to study the typology of proofs produced by students. Supported by this theoretical, we realize our analyses with the purpose of responding to our question: Which mathematics and didactics organizations involving proofs and demonstration are proposed for didactics materials of high school, on content Analytic Geometry? Answering this question, we developed a qualitative research with approach documentary and from survey bibliographic we might have idea of problems involved in the teaching and learning of proofs and demonstrations on mathematical content, both in elementary and high school. The analysis of these materials confirmed two of our research hypotheses and showed that the work with proofs and demonstrations in didactics materials was not abandoned, but the clarity of the terms belonging to deductive system is unsatisfactory for understanding of what is demonstration in Mathematics
O presente estudo tem como objetivo analisar como os autores de materiais didáticos do Ensino Médio organizaram as tarefas propostas envolvendo provas e demonstrações no conteúdo Geometria Analítica para a 3ª. série do Ensino Médio. Com o intuito de propor algumas reflexões a esse respeito, decidimos analisar as coleções de livros didáticos aprovadas pelo Programa Nacional do Livro Didático para o Ensino Médio (PNLEM/2009) e os cadernos bimestrais adotados pela Secretaria da Educação do Estado de São Paulo (SEESP/2009), disponibilizados para alunos e professores, distintamente. Julgamos a pertinência de analisar conjuntamente esses materiais por atuarmos na rede pública estadual paulista, visando às contribuições que vierem a ocorrer. A análise desses materiais foi realizada considerando as tarefas propostas sobre o conteúdo Geometria Analítica, limitado ao estudo da equação de uma reta. O aporte teórico que fundamentou nossas análises seguiu os pressupostos da Teoria Antropológica do Didático de Yves Chevallard (1999), que focaliza o estudo das organizações praxeológicas Matemática e didática pensadas para o ensino e aprendizagem da Matemática, e o trabalho de Nicolas Balacheff (1988), que visa ao estudo da tipologia de provas produzidas por alunos. Apoiado por esse referencial teórico efetivamos nossas análises com o intuito de responder à nossa questão de pesquisa: Quais organizações Matemáticas e didáticas envolvendo prova e demonstração são propostas por materiais didáticos do Ensino Médio, no conteúdo Geometria Analítica? Visando a responder a esta questão, desenvolvemos uma pesquisa qualitativa com enfoque documental, e a partir do levantamento bibliográfico pudemos ter ideia da problemática envolvida no ensino e na aprendizagem de provas e demonstrações em conteúdos matemáticos, tanto no Ensino Fundamental quanto no Ensino Médio. A análise desses materiais confirmou duas de nossas hipóteses de pesquisa e nos revelou que o trabalho com provas e demonstrações em materiais didáticos não foi abandonado, porém a clareza dos termos pertencentes ao sistema dedutivo é insatisfatória no que diz respeito à compreensão do que seja passível de demonstração em Matemática
Veng, Mengkoung. « Self-mixing interferometry for absolute distance measurement : modelling and experimental demonstration of intrinsic limitations ». Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0077.
Texte intégralSelf-mixing Interferometry has been studied extensively in the last five decades in various sensing applications. Sensors under the SMI technique have the laser diode as the light source, the interferometer, and the detector. The light from the laser diode propagates towards a distant target where it is partially reflected or back-scattered before being re-injected into the active cavity of the laser. When the laser diode experiences the external optical feedback, the reflected light imprinted with information from the distant target or from the external cavity medium induces perturbation to the operating parameters of the laser. For SMI measurement sensors such as harmonic motion and absolute distance applications, the fringe counting method is basically used to determine the target's displacement and distance respectively. Two different approaches to modelling the SMI phenomenon have been developed: the three-mirror cavity and the perturbation of the rate equation. The single equation that describes the phase condition imposed by the optical feedback is usually referred to as the excess phase equation. One of the most important and most useful parameters in the excess phase equation is the feedback parameter C as it can be used to qualitatively categorize the regime of the laser under optical feedback. When the feedback level C < 1, the laser behaviour is stable. On the other hand, when the feedback level C > 1, more complex phenomena are observed such as hysteresis effect, presence of multiple emission frequencies (including the unstable frequencies), apparent splitting of the emission line due to mode hopping and fringe disappearance phenomenon. The fringes disappearance phenomenon in the self-mixing interferometry occurs whenever the external round-trip phase at free-running state is modulated by either external modulation such as external cavity length changes or internal modulation when the laser injection current is modulated with a high back-scattered light power. This phenomenon has been observed by many authors for harmonic motion or vibration application and more recently in the case of the absolute distance measurement scheme when the laser injection current is modulated in the triangle waveform. This phenomenon is highly dependent on the feedback parameter C and it is described in detail based on the coupled cavity model. The primary cause for fringes disappearance is demonstrated to be the expansion of the excess phase equation stable solutions range with the increment of the parameter C, thus reducing the number of stable solutions for a given phase stimulus. This new approach in the modelling of the fringe disappearance phenomenon allows determination of the C values for which a pair of fringes are expected to disappear and as a consequence correlates the number of missing fringes to the value of C. This approach is validated both by a behavioural model of the laser under optical feedback and by a series of measurements in the SMI absolute distance configuration
Yepremyan, Astrik. « Of Proofs, Mathematicians, and Computers ». Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/scripps_theses/723.
Texte intégralEfimova, Hagsröm Inga. « Matematiskt resonemang på högstadiet : En studie av vilka strategier högstadieelever väljer vid matematiska resonemangsföringar ». Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-9266.
Texte intégralThe purpose of this study is to examine secondary school students’ strategies of reasoning. The study inquires into which strategies students choose when reasoning mathematically as well as differences and similarities between the younger students’ solutions and the older students’ solutions. The study was conducted in two classes, in years 8 and 9 respectively, at a secondary school. The students were asked to solve tasks, which encouraged them to reason mathematically, on individual basis. The study revealed that the majority of students had chosen to reason deductively. The comparison of students’ presented answers in two years showed that the ninth-graders’ solutions are characterized of greater skill when it comes to algebraic demonstrations. The results of the study also reveal that students with stronger algebraic abilities attempt more often to generalize the given mathematical statements further.
Souba, Matthew. « From the Outside Looking In : Can mathematical certainty be secured without being mathematically certain that it has been ? » The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574777956439624.
Texte intégralPaulino, Zita da Conceição Russo. « A demonstração matemática com recurso a um ambiente de geometria dinâmica : um estudo de caso com alunos de 10º ano de escolaridade ». Master's thesis, Universidade de Évora, 2012. http://hdl.handle.net/10174/11572.
Texte intégralPeske, Wendy Ann. « A topological approach to nonlinear analysis ». CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2779.
Texte intégralTerrematte, Patrick Cesar Alves. « A integra??o do tutorial interativo TryLogic via IMS Learning Tools Interoperability : construindo uma infraestrutura para o ensino de L?gica atrav?s de estrat?gias de demonstra??o e refuta??o ». Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18685.
Texte intégralLogic courses represent a pedagogical challenge and the recorded number of cases of failures and of discontinuity in them is often high. Amont other difficulties, students face a cognitive overload to understand logical concepts in a relevant way. On that track, computational tools for learning are resources that help both in alleviating the cognitive overload scenarios and in allowing for the practical experimenting with theoretical concepts. The present study proposes an interactive tutorial, namely the TryLogic, aimed at teaching to solve logical conjectures either by proofs or refutations. The tool was developed from the architecture of the tool TryOcaml, through support of the communication of the web interface ProofWeb in accessing the proof assistant Coq. The goals of TryLogic are: (1) presenting a set of lessons for applying heuristic strategies in solving problems set in Propositional Logic; (2) stepwise organizing the exposition of concepts related to Natural Deduction and to Propositional Semantics in sequential steps; (3) providing interactive tasks to the students. The present study also aims at: presenting our implementation of a formal system for refutation; describing the integration of our infrastructure with the Virtual Learning Environment Moodle through the IMS Learning Tools Interoperability specification; presenting the Conjecture Generator that works for the tasks involving proving and refuting; and, finally to evaluate the learning experience of Logic students through the application of the conjecture solving task associated to the use of the TryLogic
A disciplina de L?gica representa um desa o tanto para docentes como para discentes, o que em muitos casos resulta em reprova??es e desist?ncias. Dentre as dificuldades enfrentadas pelos alunos est? a sobrecarga da capacidade cognitiva para compreender os conceitos l?gicos de forma relevante. Neste sentido, as ferramentas computacionais de aprendizagem s?o recursos que auxiliam a redu??o de cen?rios de sobrecarga cognitiva, como tamb?m permitem a experi?ncia pr?tica de conceitos te?ricos. O presente trabalho prop?e uma tutorial interativo chamado TryLogic, visando ao ensino da tarefa de Demonstra??o ou Refuta??o (DxR) de conjecturas l?gicas. Trata-se de uma ferramenta desenvolvida a partir da arquitetura do TryOcaml atrav?s do suporte de comunica??o da interface web ProofWeb para acessar o assistente de demonstra??o de teoremas Coq. Os objetivos do TryLogic s?o: (1) Apresentar um conjunto de li??es para aplicar estrat?gias heur?sticas de an?lise de problemas em L?gica Proposicional; (2) Organizar em passo-a-passo a exposi ??o dos conte?dos de Dedu??o Natural e Sem?ntica Proposicional de forma sequencial; e (3) Fornecer aos alunos tarefas interativas. O presente trabalho prop?e tamb?m apresentar a nossa implementa??o de um sistema formal de refuta??o; descrever a integra??o de nossa infraestrutura com o Ambiente Virtual de Aprendizagem Moodle atrav?s da especi ca??o IMS Learning Tools Interoperability ; apresentar o Gerador de Conjecturas de tarefas de Demonstra??o e Refuta??o e, por m, avaliar a experi?ncia da aprendizagem de alunos de L?gica atrav?s da aplica??o da tarefa de DxR em associa??o ? utiliza??o do TryLogic
Dumbravă, Ştefania-Gabriela. « Formalisation en Coq de Bases de Données Relationnelles et Déductives -et Mécanisation de Datalog ». Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS525/document.
Texte intégralThis thesis presents a formalization of fundamental database theories and algorithms. This furthers the maturing state of the art in formal specification development in the database field, with contributions stemming from two foundational approches to database models: relational and logic based.As such, a first contribution is a Coq library for the relational model. This contains a mechanization of integrity constraints and of their inference procedures. We model two of the most common dependencies, namely functional and multivalued, together with their corresponding axiomatizations. We prove soundness of their inference algorithms and, for the case of functional ones, also completeness. These types of dependencies are instances of equality and, respectively, tuple generating dependencies, which fall under the yet wider class of general dependencies. We model these and their inference procedure,i.e, the chase, for which we establish soundness.A second contribution consists of a Coq/Ssreflect library for logic programming in the Datalog setting. As part of this work, we give (one of the) first mechanizations of the standard Datalog language and of its extension with negation. The library includes a formalization of their model theoretical semantics and of their fixpoint semantics, implemented through bottom-up and, respectively, through stratified evaluation procedures. This is complete with the corresponding soundness, termination and completeness proofs. In this context, we also construct a preliminary framework for dealing with stratified programs. This work paves the way towards the certification of data-centric applications