Littérature scientifique sur le sujet « Mathematics Proof theory. Logic, Symbolic and mathematical »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Mathematics Proof theory. Logic, Symbolic and mathematical ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Mathematics Proof theory. Logic, Symbolic and mathematical"
Eklof, Paul C. « Fred Appenzeller. An independence result in quadratic form theory : infinitary combinatorics applied to ε-Hermitian spaces. The journal of symbolic logic, vol. 54 (1989), pp. 689–699. - Otmar Spinas. Linear topologies on sesquilinear spaces of uncountable dimension. Fundamenta mathematicae, vol. 139 (1991), pp. 119–132. - James E. Baumgartner, Matthew Foreman, and Otmar Spinas. The spectrum of the Γ-invariant of a bilinear space. Journal of algebra, vol. 189 (1997), pp. 406–418. - James E. Baumgartner and Otmar Spinas. Independence and consistency proofs in quadratic form theory. The journal of symbolic logic, vol. 56 (1991), pp. 1195–1211. - Otmar Spinas. Iterated forcing in quadratic form theory. Israel journal of mathematics, vol. 79 (1992), pp. 297–315. - Otmar Spinas. Cardinal invariants and quadratic forms. Set theory of the reals, edited by Haim Judah, Israel mathematical conference proceedings, vol. 6, Gelbart Research Institute for Mathematical Sciences, Bar-Ilan University, Ramat-Gan 1993, distributed by the American Mathematical Society, Providence, pp. 563–581. - Saharon Shelah and Otmar Spinas. Gross spaces. Transactions of the American Mathematical Society, vol. 348 (1996), pp. 4257–4277. » Bulletin of Symbolic Logic 7, no 2 (juin 2001) : 285–86. http://dx.doi.org/10.2307/2687785.
Texte intégralBuss, Samuel, Ulrich Kohlenbach et Michael Rathjen. « Mathematical Logic : Proof Theory, Constructive Mathematics ». Oberwolfach Reports 8, no 4 (2011) : 2963–3002. http://dx.doi.org/10.4171/owr/2011/52.
Texte intégralBuss, Samuel, Ulrich Kohlenbach et Michael Rathjen. « Mathematical Logic : Proof Theory, Constructive Mathematics ». Oberwolfach Reports 11, no 4 (2014) : 2933–86. http://dx.doi.org/10.4171/owr/2014/52.
Texte intégralBuss, Samuel, Rosalie Iemhoff, Ulrich Kohlenbach et Michael Rathjen. « Mathematical Logic : Proof Theory, Constructive Mathematics ». Oberwolfach Reports 14, no 4 (18 décembre 2018) : 3121–83. http://dx.doi.org/10.4171/owr/2017/53.
Texte intégralBuss, Samuel, Rosalie Iemhoff, Ulrich Kohlenbach et Michael Rathjen. « Mathematical Logic : Proof Theory, Constructive Mathematics ». Oberwolfach Reports 17, no 4 (13 septembre 2021) : 1693–757. http://dx.doi.org/10.4171/owr/2020/34.
Texte intégralArai, Toshiyasu. « Wilfried Buchholz. Notation systems for infinitary derivations. Archive for mathematical logic, vol. 30 no. 5–6 (1991), pp. 277–296. - Wilfried Buchholz. Explaining Gentzen's consistency proof within infinitary proof theory. Computational logic and proof theory, 5th Kurt Gödel colloquium, KGC '97, Vienna, Austria, August 25–29, 1997, Proceedings, edited by Georg Gottlob, Alexander Leitsch, and Daniele Mundici, Lecture notes in computer science, vol. 1289, Springer, Berlin, Heidelberg, New York, etc., 1997, pp. 4–17. - Sergei Tupailo. Finitary reductions for local predicativity, I : recursively regular ordinals. Logic Colloquium '98, Proceedings of the annual European summer meeting of the Association for Symbolic Logic, held in Prague, Czech Republic, August 9–15, 1998, edited by Samuel R. Buss, Petr Háajek, and Pavel Pudlák, Lecture notes in logic, no. 13, Association for Symbolic Logic, Urbana, and A K Peters, Natick, Mass., etc., 2000, pp. 465–499. » Bulletin of Symbolic Logic 8, no 3 (septembre 2002) : 437–39. http://dx.doi.org/10.2178/bsl/1182353905.
Texte intégralAvigad, Jeremy. « Forcing in Proof Theory ». Bulletin of Symbolic Logic 10, no 3 (septembre 2004) : 305–33. http://dx.doi.org/10.2178/bsl/1102022660.
Texte intégralGentilini, Paolo. « Proof theory and mathematical meaning of paraconsistent C-systems ». Journal of Applied Logic 9, no 3 (septembre 2011) : 171–202. http://dx.doi.org/10.1016/j.jal.2011.04.001.
Texte intégralNEGRI, SARA, et JAN VON PLATO. « Proof systems for lattice theory ». Mathematical Structures in Computer Science 14, no 4 (août 2004) : 507–26. http://dx.doi.org/10.1017/s0960129504004244.
Texte intégralRABE, FLORIAN. « A logical framework combining model and proof theory ». Mathematical Structures in Computer Science 23, no 5 (1 mars 2013) : 945–1001. http://dx.doi.org/10.1017/s0960129512000424.
Texte intégralThèses sur le sujet "Mathematics Proof theory. Logic, Symbolic and mathematical"
Duff, Karen Malina. « What Are Some of the Common Traits in the Thought Processes of Undergraduate Students Capable of Creating Proof ? » Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1856.pdf.
Texte intégralPeske, Wendy Ann. « A topological approach to nonlinear analysis ». CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2779.
Texte intégralBrierley, William. « Undecidability of intuitionistic theories ». Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66016.
Texte intégralEliasson, Jonas. « Ultrasheaves ». Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3762.
Texte intégralKonecny, Jan. « Isotone fuzzy Galois connections and their applications in formal concept analysis ». Diss., Online access via UMI:, 2009.
Trouver le texte intégralIncludes bibliographical references.
Schwartzkopff, Robert. « The numbers of the marketplace : commitment to numbers in natural language ». Thesis, University of Oxford, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711821.
Texte intégralFreire, Rodrigo de Alvarenga. « Os fundamentos do pensamento matematico no seculo XX e a relevancia fundacional da teoria de modelos ». [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281061.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-12T22:46:52Z (GMT). No. of bitstreams: 1 Freire_RodrigodeAlvarenga_D.pdf: 761227 bytes, checksum: 3b1a0de92aa93b50f2bfc602bf6173bc (MD5) Previous issue date: 2009
Resumo: Esta Tese tem como objetivo elucidar, ao menos parcialmente, a questão do significado da Teoria de Modelos para uma reflexão sobre o conhecimento matemático no século XX. Para isso, vamos buscar, primeiramente, alcançar uma compreensão da própria reflexão sobre o conhecimento matemático, que será denominada de Fundamentos do Pensamento Matemático no século XX, e da própria relevância fundacional. Em seguida, analisaremos, dentro do contexto fundacional estabelecido, o papel da Teoria de Modelos e da sua interação com a Álgebra, em geral, e, finalmente, empreenderemos um estudo de caso específico. Nesse estudo de caso mostraremos que a Teoria de Galois pode ser vista como um conteúdo lógico, e buscaremos compreender o significado fundacional desse enquadramento modelo-teórico para uma parte da Álgebra clássica.
Abstract: The aim of the present Thesis is to bring some light to the question about the status and relevance of Model Theory to a reflection about the mathematical knowledge in the twentieth century. To pursue this target, we will, first of all, try to reach a comprehension of the reflection about the mathematical knowledge, itself, what will be designated as Foundations of Mathematical Thought in the twentieth century, and of the foundational relevance, itself. In the sequel, we will provide an analysis, of the role of Model Theory and its interaction with Algebra, in general, within the established foundational setting and, finally, we will discuss a specific study case. In this study case we will show that Galois Theory can be seen as a logical content, and we will try to understand the foundational meaning of this model-theoretic framework for some part of classical Algebra.
Doutorado
Logica
Doutor em Filosofia
Sentone, Francielle Gonçalves. « Paradoxos geométricos em sala de aula ». Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2701.
Texte intégralApresentamos neste trabalho alguns paradoxos lógico-matemáticos, como o paradoxo de Galileu, e também alguns paradoxos geométricos, como os paradoxos de Curry, de Hooper e de Banach-Tarski. Empregamos os paradoxos de Curry e de Hooper para motivar o estudo de conceitos de Geometria e de Teoria dos Números, tais como área, semelhança de triângulos, o Teorema de Pitágoras, razões trigonométricas no triângulo retângulo, o coeficiente angular da reta e a sequência de Fibonacci, e organizamos atividades lúdicas para a sala de aula no Ensino Fundamental e no Ensino Médio.
We present in this work some logical-mathematical paradoxes, as Galileo's paradox, and also some geometric paradoxes, such as Curry's paradox, Hooper's paradox and the Banach-Tarski paradox. We employ the Curry and Hooper paradoxes to motivate the study of concepts of Geometry and Number Theory, such as area, triangle similarity, Pythagorean Theorem, trigonometric ratios in the right triangle, angular coefficient of the line, and Fibonacci sequence, and we organize recreation activities for the classroom in Elementary and High School.
Van, Staden Anna Maria. « The role of logical principles in proving conjectures using indirect proof techniques in mathematics ». Thesis, 2012. http://hdl.handle.net/10210/6769.
Texte intégralRecently there has been renewed interest in proof and proving in schools worldwide. However, many school students and even teachers of mathematics have only superficial ideas on the nature of proof. Proof is considered the heart of mathematics as individuals explore, make conjectures and try to convince themselves and others about the truth or falsity of their conjectures. There are basically two categories of deductive proof, namely proof by direct argument and indirect proofs. The aim of this study was to examine the structural features common to most of the mathematical proofs for formalised mathematical systems, with the emphasis on indirect proof techniques. The main question was to investigate which mathematical activities and logical principles at secondary school level are necessary for students to become proficient with proof writing. A great deal of specialised language is associated with reasoning. Such words as axiom, theorem, proof, and conjecture are just some of the terms that students must understand as they engage in the proof-making task. The formal aspect of mathematics at secondary school is extremely important. It is inevitable that students become involved with hypothetical arguments. They use among others, proofs by contradiction. Furthermore, necessary and sufficient conditions are related to theorems and their converses. It is therefore apparent that the study of logic is necessary already at secondary school level in order to practise mathematics satisfactorily. An analysis of the mathematics syllabus of the Department of Education has indicated that students should use indirect techniques of proof. According to this syllabus students should be familiar with logical arguments. The conclusion which is reached, gives evidence that students’ background in logic is completely lacking and inadequate. As a result they cannot cope adequately with argumentation and this causes a poor perception of what mathematics entails. Although proof writing can never be reduced to a mechanical process, considerable anxiety and uncertainty can be eliminated from the process if students are exposed to the principles of elementary logic and techniques. Mathematics educators and education researchers have reported students’ difficulties with mathematical proof and point out the conflict between the nature of this essential mathematical activity and current approaches to teaching it. This recent interest has led to an increased effort to teach proof in innovative ways.
Van, der Vyver Thelma. « Proof systems for propositional modal logic ». Diss., 1997. http://hdl.handle.net/10500/16280.
Texte intégralComputing
M. Sc. (Computer Science)
Livres sur le sujet "Mathematics Proof theory. Logic, Symbolic and mathematical"
1957-, Taylor John, dir. 100% mathematical proof. Chichester : Wiley, 1996.
Trouver le texte intégralIntroduction to mathematical proof : A transition to advanced mathematics. Boca Raton : CRC Press, Taylor & Francis Group, 2015.
Trouver le texte intégralRowan, Garnier, dir. Understanding mathematical proof. Boca Raton : Taylor & Francis, 2014.
Trouver le texte intégralB, Maddox Randall, dir. A transition to abstract mathematics : Learning mathematical thinking and writing. 2e éd. Amsterdam : Academic Press, 2009.
Trouver le texte intégralProof, logic, and conjecture : The mathematician's toolbox. New York : W.H. Freeman, 1998.
Trouver le texte intégralResolution proof systems : An algebraic theory. Dordrecht : Kluwer Academic Publishers, 1996.
Trouver le texte intégral1977-, Nguyen Phuong, dir. Perspectives in logic : Logical foundations of proof complexity. Cambridge : Cambridge University Press, 2010.
Trouver le texte intégralBenson, Donald C. The moment of proof : Mathematical epiphanies. New York : Oxford University Press, 1999.
Trouver le texte intégralHandbook of mathematical induction : Theory and applications. Boca Raton, FL : CRC Press, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Mathematics Proof theory. Logic, Symbolic and mathematical"
Grattan-Guinness, Ivor. « Turing’s mentor, Max Newman ». Dans The Turing Guide. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198747826.003.0052.
Texte intégralSmullyan, Raymond M. « Tarski’s Theorem for Arithmetic ». Dans Gödel's Incompleteness Theorems. Oxford University Press, 1992. http://dx.doi.org/10.1093/oso/9780195046724.003.0005.
Texte intégralShin, Sun-Joo. « Situation-Theoretic Account of Valid Reasoning with Venn Diagrams ». Dans Logical Reasoning with Diagrams. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195104271.003.0009.
Texte intégralTakahashi, Tadashi. « Proving in Mathematics Education – On the Proof using ATP ». Dans Theory and Practice : An Interface or A Great Divide ?, 558–63. WTM-Verlag Münster, 2019. http://dx.doi.org/10.37626/ga9783959871129.0.105.
Texte intégralPollack, Robert. « How to believe a machine-checked proof ». Dans Twenty Five Years of Constructive Type Theory. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780198501275.003.0013.
Texte intégralWhitty, Robin, et Robin Wilson. « Introducing Turing’s mathematics ». Dans The Turing Guide. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198747826.003.0048.
Texte intégralMartin-Löf, Per. « An intuitionistic theory of types ». Dans Twenty Five Years of Constructive Type Theory. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780198501275.003.0010.
Texte intégralBarwise, Jon, et John Etchemendy. « Visual Information and Valid Reasoning ». Dans Logical Reasoning with Diagrams. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195104271.003.0005.
Texte intégralJohnson, Steven D., et Jon Barwise. « Toward The Rigorous Use Of Diagrams In Reasoning About Hardware ». Dans Logical Reasoning with Diagrams. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195104271.003.0015.
Texte intégral