Littérature scientifique sur le sujet « Matrix partitions »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Matrix partitions ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Matrix partitions"
Li, Yu, Jianfeng Wu, Chunfu Lu, Zhichuan Tang et Chengmin Li. « Pillow Support Model with Partitioned Matching Based on Body Pressure Distribution Matrix ». Healthcare 9, no 5 (12 mai 2021) : 571. http://dx.doi.org/10.3390/healthcare9050571.
Texte intégralAdm, Mohammad, Shaun Fallat, Karen Meagher, Shahla Nasserasr, Sarah Plosker et Boting Yang. « Achievable multiplicity partitions in the inverse eigenvalue problem of a graph ». Special Matrices 7, no 1 (1 janvier 2019) : 276–90. http://dx.doi.org/10.1515/spma-2019-0022.
Texte intégralAlexandrov, A. « Matrix models for random partitions ». Nuclear Physics B 851, no 3 (octobre 2011) : 620–50. http://dx.doi.org/10.1016/j.nuclphysb.2011.06.007.
Texte intégralFeder, Tomás, et Pavol Hell. « Matrix partitions of perfect graphs ». Discrete Mathematics 306, no 19-20 (octobre 2006) : 2450–60. http://dx.doi.org/10.1016/j.disc.2005.12.035.
Texte intégralFeder, Tomás, Pavol Hell et Oren Shklarsky. « Matrix partitions of split graphs ». Discrete Applied Mathematics 166 (mars 2014) : 91–96. http://dx.doi.org/10.1016/j.dam.2013.10.016.
Texte intégralChen, Ji Wen, Jin Sheng Zhang, Zhi Wang et Jing Kun Wang. « Function Module Dynamic Partition for Product Innovation Design ». Applied Mechanics and Materials 58-60 (juin 2011) : 2095–100. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.2095.
Texte intégralLi, Yimeng, Marcello Ruta et Matthew A. Wills. « Craniodental and Postcranial Characters of Non-Avian Dinosauria Often Imply Different Trees ». Systematic Biology 69, no 4 (26 novembre 2019) : 638–59. http://dx.doi.org/10.1093/sysbio/syz077.
Texte intégralGöbel, Andreas, Leslie Ann Goldberg, Colin McQuillan, David Richerby et Tomoyuki Yamakami. « Counting List Matrix Partitions of Graphs ». SIAM Journal on Computing 44, no 4 (janvier 2015) : 1089–118. http://dx.doi.org/10.1137/140963029.
Texte intégralEynard, B. « A matrix model for plane partitions ». Journal of Statistical Mechanics : Theory and Experiment 2009, no 10 (15 octobre 2009) : P10011. http://dx.doi.org/10.1088/1742-5468/2009/10/p10011.
Texte intégralStrahov, Eugene. « Matrix Kernels for Measures on Partitions ». Journal of Statistical Physics 133, no 5 (11 novembre 2008) : 899–919. http://dx.doi.org/10.1007/s10955-008-9641-9.
Texte intégralThèses sur le sujet "Matrix partitions"
Bagatini, Alessandro. « Matrix representation for partitions and Mock Theta functions ». reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/150232.
Texte intégralIn this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
Quéré, Romain. « Quelques propositions pour la comparaison de partitions non strictes ». Phd thesis, Université de La Rochelle, 2012. http://tel.archives-ouvertes.fr/tel-00950514.
Texte intégralMatte, Marília Luiza. « Matrix representations for integer partitions : some consequences and a new approach ». Universidade Federal do Rio Grande do Sul, 2018. http://hdl.handle.net/10183/178603.
Texte intégralBas, Erdeniz Ozgun. « Load-Balancing Spatially Located Computations using Rectangular Partitions ». The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306909831.
Texte intégralBellissimo, Michael Robert. « A LOWER BOUND ON THE DISTANCE BETWEEN TWO PARTITIONS IN A ROUQUIER BLOCK ». University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1523039734121649.
Texte intégralBarsukov, Alexey. « On dichotomy above Feder and Vardi's logic ». Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. https://tel.archives-ouvertes.fr/tel-04100704.
Texte intégralA subset of NP is said to have a dichotomy if it contains problem that are either solvable in P-time or NP-complete. The class of finite Constraint Satisfaction Problems (CSP) is a well-known subset of NP that follows such a dichotomy. The complexity class NP does not have a dichotomy unless P = NP. For both of these classes there exist logics that are associated with them. -- NP is captured by Existential Second-Order (ESO) logic by Fagin's theorem, i.e., a problem is in NP if and only if it is expressible by an ESO sentence.-- CSP is a subset of Feder and Vardi's logic, Monotone Monadic Strict NP without inequalities (MMSNP), and for every MMSNP sentence there exists a P-time equivalent CSP problem. This implies that ESO does not have a dichotomy as well as NP, and that MMSNP has a dichotomy as well as CSP. The main objective of this thesis is to study subsets of NP that strictly contain CSP or MMSNP with respect to the dichotomy existence.Feder and Vardi proved that if we omit one of the three properties that define MMSNP, namely being monotone, monadic or omitting inequalities, then the resulting logic does not have a dichotomy. As their proofs remain sketchy at times, we revisit these results and provide detailed proofs. Guarded Monotone Strict NP (GMSNP) is a known extension of MMSNP that is obtained by relaxing the "monadic" restriction of MMSNP. We define similarly a new logic that is called MMSNP with Guarded inequalities, relaxing the restriction of being "without inequalities". We prove that it is strictly more expressive than MMSNP and that it also has a dichotomy.There is a logic MMSNP₂ that extends MMSNP in the same way as MSO₂ extends Monadic Second-Order (MSO) logic. It is known that MMSNP₂ is a fragment of GMSNP and that these two classes either both have a dichotomy or both have not. We revisit this result and strengthen it by proving that, with respect to having a dichotomy, without loss of generality, one can consider only MMSNP₂ problems over one-element signatures, instead of GMSNP problems over arbitrary finite signatures.We seek to prove the existence of a dichotomy for MMSNP₂ by finding, for every MMSNP₂ problem, a P-time equivalent MMSNP problem. We face some obstacles to build such an equivalence. However, if we allow MMSNP sentences to consist of countably many negated conjuncts, then we prove that such an equivalence exists. Moreover, the corresponding infinite MMSNP sentence has a property of being "regular". This regular property means that, in some sense, this sentence is still finite. It is known that regular MMSNP problems can be expressed by CSP on omega-categorical templates. Also, there is an algebraic dichotomy characterisation for omega-categorical CSPs that describe MMSNP problems. If one manages to extend this algebraic characterisation onto regular MMSNP, then our result would provide an algebraic dichotomy for MMSNP₂.Another potential way to prove the existence of a dichotomy for MMSNP₂ is to mimic the proof of Feder and Vardi for MMSNP. That is, by finding a P-time equivalent CSP problem. The most difficult part there is to reduce a given input structure to a structure of sufficiently large girth. For MMSNP and CSP, it is done using expanders, i.e., structures, where the distribution of tuples is close to a uniform distribution. We study this approach with respect to MMSNP₂ and point out the main obstacles. (...)
Acosta, Jaramillo Enrique. « Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations ». Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293410.
Texte intégralShahzad, Yasser. « Micellar chromatographic partition coefficients and their application in predicting skin permeability ». Thesis, University of Huddersfield, 2013. http://eprints.hud.ac.uk/id/eprint/23480/.
Texte intégralThüne, Mario. « Eigenvalues of Matrices and Graphs ». Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-120713.
Texte intégralYoung, Barrington R. St A. « Efficient Algorithms for Data Mining with Federated Databases ». University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1179332091.
Texte intégralLivres sur le sujet "Matrix partitions"
Claudio, Procesi, dir. Topics in hyperplane arrangements, polytopes and box-splines. New York : Springer, 2011.
Trouver le texte intégralKeating, Jon, et Nina Snaith. Random permutations and related topics. Sous la direction de Gernot Akemann, Jinho Baik et Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.25.
Texte intégralConcini, Corrado De, et Claudio Procesi. Topics in Hyperplane Arrangements, Polytopes and Box-Splines. Springer London, Limited, 2010.
Trouver le texte intégralGuhr, Thomas. Replica approach in random matrix theory. Sous la direction de Gernot Akemann, Jinho Baik et Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.8.
Texte intégralMarino, Marcos. Quantum chromodynamics. Sous la direction de Gernot Akemann, Jinho Baik et Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.32.
Texte intégralChapitres de livres sur le sujet "Matrix partitions"
Abed, Fidaa, Ioannis Caragiannis et Alexandros A. Voudouris. « Near-Optimal Asymmetric Binary Matrix Partitions ». Dans Mathematical Foundations of Computer Science 2015, 1–13. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48054-0_1.
Texte intégralBrietzke, Eduardo H. M., José Plínio O. Santos et Robson da Silva. « Bijective proofs using two-line matrix representations for partitions ». Dans Combinatory Analysis, 263–93. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7858-4_17.
Texte intégralBirk, David E., et Robert L. Trelstad. « Metazoan Mesenchyme Partitions the Extracellular Space During Matrix Morphogenesis ». Dans Biology of Invertebrate and Lower Vertebrate Collagens, 103–14. Boston, MA : Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7636-1_9.
Texte intégralHackbusch, Wolfgang. « Matrix Partition ». Dans Hierarchical Matrices : Algorithms and Analysis, 83–116. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47324-5_5.
Texte intégralHarville, David A. « Submatrices and Partitioned Matrices ». Dans Matrix Algebra : Exercises and Solutions, 7–10. New York, NY : Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0181-3_2.
Texte intégralAlon, Noga, Michal Feldman, Iftah Gamzu et Moshe Tennenholtz. « The Asymmetric Matrix Partition Problem ». Dans Web and Internet Economics, 1–14. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45046-4_1.
Texte intégralHarville, David A. « Submatrices and Partitioned Matrices ». Dans Matrix Algebra From a Statistician’s Perspective, 13–22. New York, NY : Springer New York, 1997. http://dx.doi.org/10.1007/0-387-22677-x_2.
Texte intégralKuang, Da, Jaegul Choo et Haesun Park. « Nonnegative Matrix Factorization for Interactive Topic Modeling and Document Clustering ». Dans Partitional Clustering Algorithms, 215–43. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09259-1_7.
Texte intégralPuntanen, Simo, George P. H. Styan et Jarkko Isotalo. « Nonnegative Definiteness of a Partitioned Matrix ». Dans Matrix Tricks for Linear Statistical Models, 305–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2_15.
Texte intégralPuntanen, Simo, George P. H. Styan et Jarkko Isotalo. « Rank of the Partitioned Matrix and the Matrix Product ». Dans Matrix Tricks for Linear Statistical Models, 121–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2_6.
Texte intégralActes de conférences sur le sujet "Matrix partitions"
Kang, Zhao, Zipeng Guo, Shudong Huang, Siying Wang, Wenyu Chen, Yuanzhang Su et Zenglin Xu. « Multiple Partitions Aligned Clustering ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/375.
Texte intégralSankhavara, C. D., et H. J. Shukla. « Influence of Partition Location on Natural Convection in a Partitioned Enclosure ». Dans ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72093.
Texte intégralGobel, Andreas, Leslie Ann Goldberg, Colin McQuillan, David Richerby et Tomoyuki Yamakami. « Counting List Matrix Partitions of Graphs ». Dans 2014 IEEE Conference on Computational Complexity (CCC). IEEE, 2014. http://dx.doi.org/10.1109/ccc.2014.14.
Texte intégralPatton, Stephen, Hamidreza Khaleghzadeh, Ravi Reddy Manumachu et Alexey Lastovetsky. « SummaGen : Parallel Matrix-Matrix Multiplication Based on Non-rectangular Partitions for Heterogeneous HPC Platforms ». Dans 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2019. http://dx.doi.org/10.1109/ipdpsw.2019.00017.
Texte intégralDerrico, Joel B., et Gershon Buchsbaum. « Image compression application of a simultaneous Karhunen-Loeve transformation in space and color ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.fc3.
Texte intégralQiu, Chen, et Jian S. Dai. « Constraint Stiffness Construction and Decomposition of a SPS Orthogonal Parallel Mechanism ». Dans ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46811.
Texte intégralFabregat-Traver, Diego, Paolo Bientinesi, Theodore E. Simos, George Psihoyios et Ch Tsitouras. « Automatic Generation of Partitioned Matrix Expressions for Matrix Operations ». Dans ICNAAM 2010 : International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498598.
Texte intégralSugino, Fumihiko. « U-duality from matrix membrane partition function ». Dans STRING THEORY ; 10th Tohwa University International Symposium on String Theory. AIP, 2002. http://dx.doi.org/10.1063/1.1454380.
Texte intégralChou, Chiu-Chih, Thong Nguyen et Jose E. Schutt-Aine. « Impact of Partition Schemes in Loewner Matrix Macromodeling ». Dans 2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS). IEEE, 2020. http://dx.doi.org/10.1109/edaps50281.2020.9312918.
Texte intégralAdi, Prajanto Wahyu, et Pramudi Arsiwi. « Fast and Robust Watermarking Method using Walsh Matrix Partition ». Dans 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2019. http://dx.doi.org/10.1109/isriti48646.2019.9034627.
Texte intégralRapports d'organisations sur le sujet "Matrix partitions"
Brenan, J. M., K. Woods, J. E. Mungall et R. Weston. Origin of chromitites in the Esker Intrusive Complex, Ring of Fire Intrusive Suite, as revealed by chromite trace element chemistry and simple crystallization models. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328981.
Texte intégral