Articles de revues sur le sujet « Membrane nanodomains »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Membrane nanodomains ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Okamoto, Yukihiro, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe, and Hiroshi Umakoshi. "Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope." Membranes 12, no. 8 (2022): 770. http://dx.doi.org/10.3390/membranes12080770.
Texte intégralSamhan-Arias, Alejandro K., Joana Poejo, Dorinda Marques-da-Silva, Oscar H. Martínez-Costa, and Carlos Gutierrez-Merino. "Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?" Molecules 28, no. 23 (2023): 7909. http://dx.doi.org/10.3390/molecules28237909.
Texte intégralSilvius, John R. "Membrane Nanodomains." Colloquium Series on Building Blocks of the Cell: Cell Structure and Function 1, no. 1 (2013): 1–103. http://dx.doi.org/10.4199/c00076ed1v01y201303bbc001.
Texte intégralLiang, Pengbo, Thomas F. Stratil, Claudia Popp, et al. "Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains." Proceedings of the National Academy of Sciences 115, no. 20 (2018): 5289–94. http://dx.doi.org/10.1073/pnas.1721868115.
Texte intégralFukata, Yuko, Ariane Dimitrov, Gaelle Boncompain, Ole Vielemeyer, Franck Perez, and Masaki Fukata. "Local palmitoylation cycles define activity-regulated postsynaptic subdomains." Journal of Cell Biology 202, no. 1 (2013): 145–61. http://dx.doi.org/10.1083/jcb.201302071.
Texte intégralDrab, Mitja, David Stopar, Veronika Kralj-Iglič, and Aleš Iglič. "Inception Mechanisms of Tunneling Nanotubes." Cells 8, no. 6 (2019): 626. http://dx.doi.org/10.3390/cells8060626.
Texte intégralMesarec, Luka, Mitja Drab, Samo Penič, Veronika Kralj-Iglič, and Aleš Iglič. "On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding." International Journal of Molecular Sciences 22, no. 5 (2021): 2348. http://dx.doi.org/10.3390/ijms22052348.
Texte intégralCebecauer, Marek, Mariana Amaro, Piotr Jurkiewicz, et al. "Membrane Lipid Nanodomains." Chemical Reviews 118, no. 23 (2018): 11259–97. http://dx.doi.org/10.1021/acs.chemrev.8b00322.
Texte intégralMa, Yuanqing, Elizabeth Hinde, and Katharina Gaus. "Nanodomains in biological membranes." Essays in Biochemistry 57 (February 6, 2015): 93–107. http://dx.doi.org/10.1042/bse0570093.
Texte intégralTraeger, Jeremiah, Dehong Hu, Mengran Yang, Gary Stacey, and Galya Orr. "Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution." Membranes 13, no. 2 (2023): 142. http://dx.doi.org/10.3390/membranes13020142.
Texte intégralKure, Jakob L., Thommie Karlsson, Camilla B. Andersen, et al. "Using kICS to Reveal Changed Membrane Diffusion of AQP-9 Treated with Drugs." Membranes 11, no. 8 (2021): 568. http://dx.doi.org/10.3390/membranes11080568.
Texte intégralLi, Guangtao, Qing Wang, Shinako Kakuda, and Erwin London. "Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids." Journal of Lipid Research 61, no. 5 (2020): 758–66. http://dx.doi.org/10.1194/jlr.ra119000565.
Texte intégralStelate, Ayoub, Eva Tihlaříková, Kateřina Schwarzerová, Vilém Neděla, and Jan Petrášek. "Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin." Biomolecules 11, no. 10 (2021): 1407. http://dx.doi.org/10.3390/biom11101407.
Texte intégralAshrafzadeh, Parham, and Ingela Parmryd. "Methods applicable to membrane nanodomain studies?" Essays in Biochemistry 57 (February 6, 2015): 57–68. http://dx.doi.org/10.1042/bse0570057.
Texte intégralHuang, Dingquan, Yanbiao Sun, Zhiming Ma, et al. "Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization." Proceedings of the National Academy of Sciences 116, no. 42 (2019): 21274–84. http://dx.doi.org/10.1073/pnas.1911892116.
Texte intégralVallés, Ana Sofía, and Francisco J. Barrantes. "Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment." Biomolecules 11, no. 11 (2021): 1697. http://dx.doi.org/10.3390/biom11111697.
Texte intégralSarmento, Maria J., Joana C. Ricardo, Mariana Amaro, and Radek Šachl. "Organization of gangliosides into membrane nanodomains." FEBS Letters 594, no. 22 (2020): 3668–97. http://dx.doi.org/10.1002/1873-3468.13871.
Texte intégralNguyen, Ngoc, Amber Lewis, Thuong Pham, Donald Sikazwe, and Kwan H. Cheng. "Exploring the Role of Anionic Lipid Nanodomains in the Membrane Disruption and Protein Folding of Human Islet Amyloid Polypeptide Oligomers on Lipid Membrane Surfaces Using Multiscale Molecular Dynamics Simulations." Molecules 28, no. 10 (2023): 4191. http://dx.doi.org/10.3390/molecules28104191.
Texte intégralFukata, Masaki, Atsushi Sekiya, Tatsuro Murakami, Norihiko Yokoi, and Yuko Fukata. "Postsynaptic nanodomains generated by local palmitoylation cycles." Biochemical Society Transactions 43, no. 2 (2015): 199–204. http://dx.doi.org/10.1042/bst20140238.
Texte intégralYurtsever, Ayhan, Takeshi Yoshida, Arash Badami Behjat, Yoshihiro Araki, Rikinari Hanayama, and Takeshi Fukuma. "Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy." Nanoscale 13, no. 13 (2021): 6661–77. http://dx.doi.org/10.1039/d0nr09178b.
Texte intégralSchneider, Falk, Dominic Waithe, Mathias P. Clausen, et al. "Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS." Molecular Biology of the Cell 28, no. 11 (2017): 1507–18. http://dx.doi.org/10.1091/mbc.e16-07-0536.
Texte intégralArumugam, Senthil, and Patricia Bassereau. "Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton." Essays in Biochemistry 57 (February 6, 2015): 109–19. http://dx.doi.org/10.1042/bse0570109.
Texte intégralNika, Konstantina, and Oreste Acuto. "Membrane nanodomains in T-cell antigen receptor signalling." Essays in Biochemistry 57 (February 6, 2015): 165–75. http://dx.doi.org/10.1042/bse0570165.
Texte intégralKarner, Andreas, Benedikt Nimmervoll, Birgit Plochberger, et al. "Tuning membrane protein mobility by confinement into nanodomains." Nature Nanotechnology 12, no. 3 (2016): 260–66. http://dx.doi.org/10.1038/nnano.2016.236.
Texte intégralOtt, Thomas. "Membrane nanodomains and microdomains in plant–microbe interactions." Current Opinion in Plant Biology 40 (December 2017): 82–88. http://dx.doi.org/10.1016/j.pbi.2017.08.008.
Texte intégralde Wit, Gabrielle, John S. H. Danial, Philipp Kukura, and Mark I. Wallace. "Dynamic label-free imaging of lipid nanodomains." Proceedings of the National Academy of Sciences 112, no. 40 (2015): 12299–303. http://dx.doi.org/10.1073/pnas.1508483112.
Texte intégralGarcía-Arribas, Aritz B., Félix M. Goñi, and Alicia Alonso. "Lipid Self-Assemblies under the Atomic Force Microscope." International Journal of Molecular Sciences 22, no. 18 (2021): 10085. http://dx.doi.org/10.3390/ijms221810085.
Texte intégralHeberle, Frederick A., Milka Doktorova, Haden L. Scott, Allison D. Skinkle, M. Neal Waxham, and Ilya Levental. "Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy." Proceedings of the National Academy of Sciences 117, no. 33 (2020): 19943–52. http://dx.doi.org/10.1073/pnas.2002200117.
Texte intégralDong, Guohua, Suzhi Li, Mouteng Yao, et al. "Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation." Science 366, no. 6464 (2019): 475–79. http://dx.doi.org/10.1126/science.aay7221.
Texte intégralHolowka, David, та Barbara Baird. "Nanodomains in early and later phases of FcɛRI signalling". Essays in Biochemistry 57 (6 лютого 2015): 147–63. http://dx.doi.org/10.1042/bse0570147.
Texte intégralTran, Tuan Minh, Choon-Peng Chng, Xiaoming Pu, et al. "Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains." Plant Cell 34, no. 1 (2021): 395–417. http://dx.doi.org/10.1093/plcell/koab276.
Texte intégralLee, Sungsu, Han Yen Tan, Ivayla I. Geneva, Aleksandr Kruglov, and Peter D. Calvert. "Actin filaments partition primary cilia membranes into distinct fluid corrals." Journal of Cell Biology 217, no. 8 (2018): 2831–49. http://dx.doi.org/10.1083/jcb.201711104.
Texte intégralTapken, W., and A. S. Murphy. "Membrane nanodomains in plants: capturing form, function, and movement." Journal of Experimental Botany 66, no. 6 (2015): 1573–86. http://dx.doi.org/10.1093/jxb/erv054.
Texte intégralChen, Xi, Angela Jen, Alice Warley, M. Jayne Lawrence, Peter J. Quinn, and Roger J. Morris. "Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition." Biochemical Journal 417, no. 2 (2008): 525–33. http://dx.doi.org/10.1042/bj20081385.
Texte intégralSchneider, Katharina, Eric Seemann, Lutz Liebmann, et al. "ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function." Journal of Cell Biology 205, no. 2 (2014): 197–215. http://dx.doi.org/10.1083/jcb.201307088.
Texte intégralYang, Xiaojuan, and Wim Annaert. "The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication." Membranes 11, no. 4 (2021): 248. http://dx.doi.org/10.3390/membranes11040248.
Texte intégralChen, Yong, Lingyun Shao, Zahida Ali, Jiye Cai та Zheng W. Chen. "NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion". Blood 111, № 8 (2008): 4220–32. http://dx.doi.org/10.1182/blood-2007-07-101691.
Texte intégralGlöckner, Nina, Sven zur Oven-Krockhaus, Leander Rohr, et al. "Three-Fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells." Plants 11, no. 19 (2022): 2630. http://dx.doi.org/10.3390/plants11192630.
Texte intégralHe, Hai-Tao, and Didier Marguet. "Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy." Annual Review of Physical Chemistry 62, no. 1 (2011): 417–36. http://dx.doi.org/10.1146/annurev-physchem-032210-103402.
Texte intégralGolfetto, Ottavia, Sunetra Biswas, Raphael Jorand, et al. "Opioid Receptors are Organized into Nanodomains in the Plasma Membrane." Biophysical Journal 110, no. 3 (2016): 484a. http://dx.doi.org/10.1016/j.bpj.2015.11.2587.
Texte intégralKoklič, Tilen, Alenka Hrovat, Ramon Guixà-González, et al. "Electron Paramagnetic Resonance Gives Evidence for the Presence of Type 1 Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Subdomains of Lipid Rafts." Molecules 26, no. 4 (2021): 973. http://dx.doi.org/10.3390/molecules26040973.
Texte intégralMcKenna, J. F., D. J. Rolfe, S. E. D. Webb, et al. "The cell wall regulates dynamics and size of plasma-membrane nanodomains inArabidopsis." Proceedings of the National Academy of Sciences 116, no. 26 (2019): 12857–62. http://dx.doi.org/10.1073/pnas.1819077116.
Texte intégralSantos, Natalia, Luthary Segura, Amber Lewis, Thuong Pham, and Kwan H. Cheng. "Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer’s and Diabetic Diseases." Molecules 29, no. 3 (2024): 740. http://dx.doi.org/10.3390/molecules29030740.
Texte intégralSrinivasan, P. "Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging." Applied Physics Letters 108, no. 3 (2016): 033702. http://dx.doi.org/10.1063/1.4940388.
Texte intégralSugiyama, Michael G., Gregory D. Fairn, and Costin N. Antonescu. "EGFR signaling in breast cancer requires licensing from separate membrane nanodomains." FASEB Journal 34, S1 (2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.05687.
Texte intégralLasserre, Rémi, Xiao-Jun Guo, Fabien Conchonaud, et al. "Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation." Nature Chemical Biology 4, no. 9 (2008): 538–47. http://dx.doi.org/10.1038/nchembio.103.
Texte intégralMurata, Michio, Shinya Hanashima, Yo Yano, et al. "Sphingomyelin Nanodomains Mainly Constitute Liquid-Ordered Phase of Ternary Model Membrane." Biophysical Journal 118, no. 3 (2020): 78a. http://dx.doi.org/10.1016/j.bpj.2019.11.600.
Texte intégralThibivilliers, Sandra, Andrew Farmer, and Marc Libault. "Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants." Plants 9, no. 3 (2020): 377. http://dx.doi.org/10.3390/plants9030377.
Texte intégralJeyifous, Okunola, Eric I. Lin, Xiaobing Chen, et al. "Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation." Proceedings of the National Academy of Sciences 113, no. 52 (2016): E8482—E8491. http://dx.doi.org/10.1073/pnas.1612963113.
Texte intégralOelke, Jochen, Andreea Pasc, Achim Wixforth, Oleg Konovalov, and Motomu Tanaka. "Highly uniform, strongly correlated fluorinated lipid nanodomains embedded in biological membrane models." Applied Physics Letters 93, no. 21 (2008): 213901. http://dx.doi.org/10.1063/1.3028088.
Texte intégral