Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Metalloenzimi.

Articles de revues sur le sujet « Metalloenzimi »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Metalloenzimi ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Höcker, Birte. "A metalloenzyme reloaded." Nature Chemical Biology 8, no. 3 (2012): 224–25. http://dx.doi.org/10.1038/nchembio.800.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

You, Jing-Song, Xiao-Qi Yu, Xiao-Yu Su, et al. "Hydrolytic metalloenzyme models." Journal of Molecular Catalysis A: Chemical 202, no. 1-2 (2003): 17–22. http://dx.doi.org/10.1016/s1381-1169(03)00199-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dong, Steven D., and Ronald Breslow. "Bifunctional cyclodextrin metalloenzyme mimics." Tetrahedron Letters 39, no. 51 (1998): 9343–46. http://dx.doi.org/10.1016/s0040-4039(98)02160-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hadianawala, Murtuza, and Bhaskar Datta. "Design and development of sulfonylurea derivatives as zinc metalloenzyme modulators." RSC Advances 6, no. 11 (2016): 8923–29. http://dx.doi.org/10.1039/c5ra27341b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kwon, Hanna, Jaswir Basran, Juliette M. Devos, et al. "Visualizing the protons in a metalloenzyme electron proton transfer pathway." Proceedings of the National Academy of Sciences 117, no. 12 (2020): 6484–90. http://dx.doi.org/10.1073/pnas.1918936117.

Texte intégral
Résumé :
In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex form
Styles APA, Harvard, Vancouver, ISO, etc.
6

Valdez, Crystal E., Amanda Morgenstern, Mark E. Eberhart, and Anastassia N. Alexandrova. "Predictive methods for computational metalloenzyme redesign – a test case with carboxypeptidase A." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31744–56. http://dx.doi.org/10.1039/c6cp02247b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Doerr, Allison. "Metalloenzyme structures in a shot." Nature Methods 10, no. 4 (2013): 287. http://dx.doi.org/10.1038/nmeth.2428.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lancaster, Kyle M. "Revving up an artificial metalloenzyme." Science 361, no. 6407 (2018): 1071–72. http://dx.doi.org/10.1126/science.aau7754.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Stoecker, Walter, Russell L. Wolz, Robert Zwilling, Daniel J. Strydom, and David S. Auld. "Astacus protease, a zinc metalloenzyme." Biochemistry 27, no. 14 (1988): 5026–32. http://dx.doi.org/10.1021/bi00414a012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Vallee, B. L. "Zinc metalloenzyme structure and function." Journal of Inorganic Biochemistry 36, no. 3-4 (1989): 299. http://dx.doi.org/10.1016/0162-0134(89)84446-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Marchal, Iris. "Microbial metalloenzyme boosts cellulose breakdown." Nature Biotechnology 43, no. 3 (2025): 301. https://doi.org/10.1038/s41587-025-02615-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Jackl, Moritz K., Hyeonglim Seo, Johannes Karges, Mark Kalaj, and Seth M. Cohen. "Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition." Chemical Science 13, no. 7 (2022): 2128–36. http://dx.doi.org/10.1039/d1sc06011b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ehudin, Melanie A., Andrew W. Schaefer, Suzanne M. Adam, et al. "Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme–peroxo–copper complexes." Chemical Science 10, no. 10 (2019): 2893–905. http://dx.doi.org/10.1039/c8sc05165h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Li, Yinghao, Mingpan Cheng, Jingya Hao, Changhao Wang, Guoqing Jia, and Can Li. "Terpyridine–Cu(ii) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme." Chemical Science 6, no. 10 (2015): 5578–85. http://dx.doi.org/10.1039/c5sc01381j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Schneider, Camille R., and Hannah S. Shafaat. "An internal electron reservoir enhances catalytic CO2 reduction by a semisynthetic enzyme." Chemical Communications 52, no. 64 (2016): 9889–92. http://dx.doi.org/10.1039/c6cc03901d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Johnson, Heather C., Shaoguang Zhang, Anna Fryszkowska, et al. "Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1620–25. http://dx.doi.org/10.1039/d0ob02395g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Smith, Meghan A., Sean H. Majer, Avery C. Vilbert, and Kyle M. Lancaster. "Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460." Chemical Science 10, no. 13 (2019): 3756–64. http://dx.doi.org/10.1039/c9sc00195f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Reed, Christopher J., Quan N. Lam, Evan N. Mirts, and Yi Lu. "Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling." Chemical Society Reviews 50, no. 4 (2021): 2486–539. http://dx.doi.org/10.1039/d0cs01297a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zubi, Yasmine S., Bingqing Liu, Yifan Gu, Dipankar Sahoo, and Jared C. Lewis. "Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering." Chemical Science 13, no. 5 (2022): 1459–68. http://dx.doi.org/10.1039/d1sc05792h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

TAGAKI, Waichiro, and Kenji OGINO. "Proteolytic Metalloenzyme Models in Micellar Systems." Journal of Japan Oil Chemists' Society 39, no. 10 (1990): 744–52. http://dx.doi.org/10.5650/jos1956.39.10_744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mayer, Clemens, Dennis G. Gillingham, Thomas R. Ward, and Donald Hilvert. "An artificial metalloenzyme for olefin metathesis." Chemical Communications 47, no. 44 (2011): 12068. http://dx.doi.org/10.1039/c1cc15005g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bersellini, Manuela, and Gerard Roelfes. "A metal ion regulated artificial metalloenzyme." Dalton Transactions 46, no. 13 (2017): 4325–30. http://dx.doi.org/10.1039/c7dt00533d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Day, Joshua A., and Seth M. Cohen. "Investigating the Selectivity of Metalloenzyme Inhibitors." Journal of Medicinal Chemistry 56, no. 20 (2013): 7997–8007. http://dx.doi.org/10.1021/jm401053m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Funk, Michael A. "Itaconate brings metalloenzyme to a halt." Science 366, no. 6465 (2019): 583.13–585. http://dx.doi.org/10.1126/science.366.6465.583-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Armstrong, Richard N. "Mechanistic Diversity in a Metalloenzyme Superfamily†." Biochemistry 39, no. 45 (2000): 13625–32. http://dx.doi.org/10.1021/bi001814v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Koder, Ronald L., Bernard Everson, Lei Zhang, Jonathan Preston, and Emma Bjerkefeldt. "Optimizing Protein Dynamics in Metalloenzyme Design." Biophysical Journal 112, no. 3 (2017): 193a. http://dx.doi.org/10.1016/j.bpj.2016.11.1072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Haeggström, Jesper Z., Anders Wetterholm, Robert Shapiro, Bert L. Vallee, and Bengt Samuelsson. "Leukotriene A4 hydrolase: A zinc metalloenzyme." Biochemical and Biophysical Research Communications 172, no. 3 (1990): 965–70. http://dx.doi.org/10.1016/0006-291x(90)91540-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Grubmeyer, Charles, Marios Skiadopoulos, and Alan E. Senior. "l-Histidinol dehydrogenase, a Zn2+-metalloenzyme." Archives of Biochemistry and Biophysics 272, no. 2 (1989): 311–17. http://dx.doi.org/10.1016/0003-9861(89)90224-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie 129, no. 34 (2017): 10290–94. http://dx.doi.org/10.1002/ange.201702181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dong, Steven D., and Ronald Breslow. "ChemInform Abstract: Bifunctional Cyclodextrin Metalloenzyme Mimics." ChemInform 30, no. 10 (2010): no. http://dx.doi.org/10.1002/chin.199910229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Okamoto, Yasunori, and Thomas R. Ward. "Cross-Regulation of an Artificial Metalloenzyme." Angewandte Chemie International Edition 56, no. 34 (2017): 10156–60. http://dx.doi.org/10.1002/anie.201702181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Mafy, Noushaba Nusrat, Dorothea B. Hudson, and Emily L. Que. "Control of metalloenzyme activity using photopharmacophores." Coordination Chemistry Reviews 499 (January 2024): 215485. http://dx.doi.org/10.1016/j.ccr.2023.215485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Karges, Johannes, Ryjul W. Stokes, and Seth M. Cohen. "Photorelease of a metal-binding pharmacophore from a Ru(ii) polypyridine complex." Dalton Transactions 50, no. 8 (2021): 2757–65. http://dx.doi.org/10.1039/d0dt04290k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Yaoyao, Weiying Wang, Wenqin Fu, et al. "Titanium(iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water." Chemical Communications 54, no. 68 (2018): 9430–33. http://dx.doi.org/10.1039/c8cc05590d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lionetto, Maria Giulia. "Carbonic Anhydrase and Biomarker Research: New Insights." International Journal of Molecular Sciences 24, no. 11 (2023): 9687. http://dx.doi.org/10.3390/ijms24119687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Schneider, Camille R., Anastasia C. Manesis, Michael J. Stevenson, and Hannah S. Shafaat. "A photoactive semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction in water." Chemical Communications 54, no. 37 (2018): 4681–84. http://dx.doi.org/10.1039/c8cc01297k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Horch, Marius, Ana Filipa Pinto, Maria Andrea Mroginski, Miguel Teixeira, Peter Hildebrandt, and Ingo Zebger. "Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase." RSC Adv. 4, no. 96 (2014): 54091–95. http://dx.doi.org/10.1039/c4ra11976b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Cheng, Wenting, Jiehua Ma, Yongchen Zhang, et al. "Bio-inspired construction of a semi-artificial enzyme complex for detecting histone acetyltransferases activity." Analyst 145, no. 2 (2020): 613–18. http://dx.doi.org/10.1039/c9an01896d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Mus, Florence, Alexander B. Alleman, Natasha Pence, Lance C. Seefeldt, and John W. Peters. "Exploring the alternatives of biological nitrogen fixation." Metallomics 10, no. 4 (2018): 523–38. http://dx.doi.org/10.1039/c8mt00038g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Li, Yinghao, Changhao Wang, Jingya Hao, Mingpan Cheng, Guoqing Jia, and Can Li. "Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions." Chemical Communications 51, no. 67 (2015): 13174–77. http://dx.doi.org/10.1039/c5cc05215g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Dick, Benjamin L., Ashay Patel, and Seth M. Cohen. "Effect of heterocycle content on metal binding isostere coordination." Chemical Science 11, no. 26 (2020): 6907–14. http://dx.doi.org/10.1039/d0sc02717k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Harty, Matthew L., Amar Nath Sharma, and Stephen L. Bearne. "Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor." Metallomics 11, no. 3 (2019): 707–23. http://dx.doi.org/10.1039/c8mt00330k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

D’Alonzo, Daniele, Maria De Fenza, Vincenzo Pavone, Angela Lombardi, and Flavia Nastri. "Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase." International Journal of Molecular Sciences 24, no. 9 (2023): 8058. http://dx.doi.org/10.3390/ijms24098058.

Texte intégral
Résumé :
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis
Styles APA, Harvard, Vancouver, ISO, etc.
44

Albareda, Marta, Agnès Rodrigue, Belén Brito, et al. "Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake." Metallomics 7, no. 4 (2015): 691–701. http://dx.doi.org/10.1039/c4mt00298a.

Texte intégral
Résumé :
Functional and topological analysis ofRhizobium leguminosarumHupE, the founding member of the HupE/UreJ family of nickel permeases, provides new hints on how bacteria manage nickel provision for metalloenzyme synthesis.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zambrano, Gerardo, Alina Sekretareva, Daniele D'Alonzo, et al. "Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme." RSC Advances 12, no. 21 (2022): 12947–56. http://dx.doi.org/10.1039/d2ra00811d.

Texte intégral
Résumé :
The artificial metalloenzyme FeMC6*a is able to perform the H2O2-mediated dechlorination of 2,4,6-trichlorophenol with unrivalled catalytic efficiency, highlighting its potential application for the removal of toxic pollutants.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Herrero, Christian, Annamaria Quaranta, Rémy Ricoux, et al. "Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA–metallocorrole couple." Dalton Transactions 45, no. 2 (2016): 706–10. http://dx.doi.org/10.1039/c5dt04158a.

Texte intégral
Résumé :
Light induced enantioselective oxidation of thioanisole with water as the oxygen atom source is catalyzed by a Mn-corrole–BSA artificial metalloenzyme in the presence of a photoactivable ruthenium complex.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Laureanti, Joseph A., Qiwen Su, and Wendy J. Shaw. "A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex." Dalton Transactions 50, no. 43 (2021): 15754–59. http://dx.doi.org/10.1039/d1dt03295j.

Texte intégral
Résumé :
An artificial metalloenzyme acting as a functional biomimic of hydrogenase enzymes was activated by assembly via covalent attachment of the molecular complex, [Ni(PNglycineP)2]2−, within a structured protein scaffold.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Honarmand Ebrahimi, Kourosh. "A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry." Metallomics 10, no. 4 (2018): 539–52. http://dx.doi.org/10.1039/c7mt00341b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Lu, Yajun Yang, Ying Yang, and Zhiyan Xiao. "Discovery of Novel Metalloenzyme Inhibitors Based on Property Characterization: Strategy and Application for HDAC1 Inhibitors." Molecules 29, no. 5 (2024): 1096. http://dx.doi.org/10.3390/molecules29051096.

Texte intégral
Résumé :
Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a require
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kim, Sung-Kun, Cynthe L. Sims, Susan E. Wozniak, Stephanie H. Drude, Dustin Whitson, and Robert W. Shaw. "Antibiotic Resistance in Bacteria: Novel Metalloenzyme Inhibitors." Chemical Biology & Drug Design 74, no. 4 (2009): 343–48. http://dx.doi.org/10.1111/j.1747-0285.2009.00879.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!