Littérature scientifique sur le sujet « Micro distributed generation system »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Micro distributed generation system ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Micro distributed generation system"
Qiu, Lu, et Yan Song Li. « Micro-Grid System Integrated with GSHP ». Advanced Materials Research 1092-1093 (mars 2015) : 288–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.288.
Texte intégralKostenko, Ganna, et Artur Zaporozhets. « Enhancing of the power system resilience through the application of micro power systems (microgrid) with renewable distributed generation ». System Research in Energy 2023, no 3 (25 août 2023) : 25–38. http://dx.doi.org/10.15407/srenergy2023.03.025.
Texte intégralZhang, Ji Hong, Zhen Kui Wu, Hua Li et Han Shan Li. « Control Strategy of Wind Photovoltaic and Energy Storage System Stability Running ». Applied Mechanics and Materials 336-338 (juillet 2013) : 547–50. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.547.
Texte intégralZhao, Yao, Ru Qi Cheng, Geng Shen Zhao et Zhi Hua Zha. « Power Optimal Utilization of DС Bus Micro-Grid System ». Advanced Materials Research 430-432 (janvier 2012) : 820–23. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.820.
Texte intégralNikkhajoei, H., et M. R. Iravani. « A Matrix Converter Based Micro-Turbine Distributed Generation System ». IEEE Transactions on Power Delivery 20, no 3 (juillet 2005) : 2182–92. http://dx.doi.org/10.1109/tpwrd.2004.838517.
Texte intégralSang, Ying Jun, et Yuan Yuan Fan. « Micro Grid Technology Research Based on the Distributed Generation ». Advanced Materials Research 804 (septembre 2013) : 383–86. http://dx.doi.org/10.4028/www.scientific.net/amr.804.383.
Texte intégralHur, Kwang Beom, Sang Kyu Rhim, Jung Keuk Park et Jae Hoon Kim. « System Development of Micro Gas Turbine Co-Generation ». Key Engineering Materials 345-346 (août 2007) : 1003–6. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1003.
Texte intégralKURATA, Osamu, Katsuhiko KADOGUCHI, Norihiko IKI, Takayuki MATSUNUMA, Hiro YOSHIDA, Tetsuhiko MAEDA et Hiromi TAKEUCHI. « E106 MICRO GAS TURBINE CO-GENERATION SYSTEM AT SAPPORO CITY UNIVERSITY UNDER SERVICE CONDITIONS(Distributed Energy System-1) ». Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009) : _1–263_—_1–268_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-263_.
Texte intégralWei, Ming Yue. « Impact of Distributed Generation on Power System ». Applied Mechanics and Materials 543-547 (mars 2014) : 681–84. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.681.
Texte intégralChen, Wei Min, et Cai Hui. « Design on a Micro-Grid System without Inverse-Power-Flow Based on Distributed Generation ». Applied Mechanics and Materials 321-324 (juin 2013) : 1342–46. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1342.
Texte intégralThèses sur le sujet "Micro distributed generation system"
Eliasstam, Hannes. « Design, Management and Optimization of a Distributed Energy Storage System with the presence of micro generation in a smart house ». Thesis, Linköpings universitet, Institutionen för systemteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-86818.
Texte intégralNavarro, Espinosa Alejandro. « Low carbon technologies in low voltage distribution networks : probabilistic assessment of impacts and solutions ». Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/low-carbon-technologies-in-low-voltage-distribution-networks-probabilistic-assessment-of-impacts-and-solutions(cc5c77df-54fe-4c1c-a599-3bbea8fbd0c1).html.
Texte intégralvan, der Walt Rhyno Lambertus Reyneke. « Photovoltaic based distributed generation power system protection ». Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/62807.
Texte intégralDissertation (MEng)--University of Pretoria, 2017.
Electrical, Electronic and Computer Engineering
MEng
Unrestricted
Ibrahim, Sarmad Khaleel. « DISTRIBUTION SYSTEM OPTIMIZATION WITH INTEGRATED DISTRIBUTED GENERATION ». UKnowledge, 2018. https://uknowledge.uky.edu/ece_etds/116.
Texte intégralZhang, Zhipeng. « Contributions of distributed generation to electric transmission system ». Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715266.
Texte intégralSahoo, Smrutirekha. « Impact Study : Photo-voltaic Distributed Generation on Power System ». Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-32369.
Texte intégralBakkar, Mostafa. « Sag effects on protection system in distributed generation grids ». Doctoral thesis, Universitat Politècnica de Catalunya, 2022. http://hdl.handle.net/10803/673721.
Texte intégralEl objetivo inicial de este estudio es emplear diferentes estrategias de control posibles para un inversor conectado a la red segun el código de red español y analizar el comportamiento de la tensión de salida durante caídas de tensión simétricas y asimétricas. El desarrollo analítico de las estrategias propuestas muestra los impactos de los huecos de tensión en las corrientes, tensiones, potencias activas y reactivas. Otro objetivo de esta investigación es proponer una estrategia de protecclón basada en lnteligencia Artificial para una red del Sistema de Distribución, radial o en anillo, con elevada penetración de Generación Distribuida. La estrategia de protección se basa en tres algoritmos diferentes para desarrollar un sistema de protección más seguro, redundante, y fiable, que asegure la continuidad de suministro durante perturbaciones en redes radiales o en anillo sin comprometer la estabilidad del sistema. Para clasificar, localizar y distinguir entre faltas permanentes o transitorias, se proponen en este trabajo nuevos algoritmos de protección basados en inteligencia artificial, permitiendo la mejora de la disponibilidad de la red, al desconectar sólo la parte del sistema en falta. Esta investigación introduce la innovación del uso del rele direccional basado en un sistema de comunicación y Redes Neuronales Artificiales (ANN). El primer algoritmo, Algoritmo Central (CE), recibe los datos de todos los PDs de la red en un control central. Este algoritmo detecta la dirección de flujo de cargas y calcula la corriente de secuencia positiva de todos los PDs de la red. El entrenamiento de ANNs incluye variaciones en la corriente de cortocircuito y la dirección del flujo de potencia en cada PD. Los beneficios mas significativos de este sistema son que concentra la seguridad total del sistema en un único dispositivo, lo que puede facilitar el control de la seguridad del sistema. Sin embargo, el CE no determinara con precisión la localización exacta de la falta si hay alguna perdida de información debida a una pobre comunicación. Por lo tanto, la redundancia del sistema se puede mejorar cooperando con un segundo algoritmo, el algoritmo de Zona (ZO). El algoritmo ZO se basa en un control de zona usando la conectividad entre dispositivos de protección de una misma línea. La línea en falta en esa zona puede identificarse combinando los datos de los dos PDs de la misma línea.. La ventaja mas relevante de este algoritmo es su flexibilidad para adaptarse a cualquier modificación de la red o perturbación, incluso si sólo son temporales, a diferencia del CE, que se ha adaptado para la configuración de la red existente. El tercer algoritmo de protección, algoritmo Local (LO), ha sido propuesto sin dependencia de la comunicación entre PDs; por lo tanto, el sistema de protección puede operar correctamente en el caso de una pérdida total de comunicación. Cada PD debe poder detectar si la falta esta ubicada en la línea protegida o en otra línea, utilizando sóIo la información local del PD. Según el tipo de falta, y en base a medidas locales en cada PD, de tensiones y corrientes abc, se aplican diferentes algoritmos en función del cálculo de las componentes simétricas. La principal ventaja de este algoritmo es la actuación por separado de cada PD, evitando los problemas de comunicación. En el caso de las redes radiales, se utilizan tanto interruptores mecánicos como réles de estado sóIido (SSR) para verificar las estrategias de protección, y en el caso de las redes en anillo se utilizan interruptores mecánicos, debido a las limitaciones de tensión para su conexión. Los algoritmos de protección propuestos se comparan con protecciones convencionales (Sobrecorriente y Diferencial) para validar la contribución de los algoritmos propuestos, especialmente en redes inteligentes reconfigurables.
Enginyeria Elèctrica
Abada, Hashim H. « Turboelectric Distributed Propulsion System for NASA Next Generation Aircraft ». Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515501052742277.
Texte intégralLuong, Tommy. « Smart Micro-Grid with Distributed Generation Using Renewable Energy for a Coastal City ». Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10977986.
Texte intégralThis thesis presents a novel approach towards solving one of the nation’s electric and energy sustainability problems and will have a major impact on California’s energy policy in meeting its targets, regarding renewable energy and minimizing carbon footprint. The study focuses on examining the technical and economic feasibility of smart micro-grid with distributed generation (DG) system with renewable energy on a coastal city. It presents a method to increase power reliability, redundancy, efficiency and to decrease the greenhouse gases (GHG) emissions contributing to climate change and ensure environmental sustainability. This innovative idea of aggregating multiple micro-grids that encompasses renewable energy from solar and wind, and uses battery storage and natural gas turbine generation for grid stability is unprecedented, which has been demonstrated as part of the results of this study. The proposed system produces enough power to sustain a small city while selling its excess power to adjacent cities. Moreover, this system could adopt other energy sources, not constrained to solar and wind, to exploit an area’s particular renewable energy niche (micro-hydro, geothermal, tidal wave, etc.). It is important to note that this system is economically, socially and environmental friendly (pillars of sustainability), through energy resource diversification, while harnessing free and abundant energy. The results of this study can used in designing and implementing a smart micro-grid in any city to meet its renewable energy and sustainability goal.
El-Feres, Rashid. « Development of adaptive voltage control system for distribution system with distributed generation ». Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489512.
Texte intégralLivres sur le sujet "Micro distributed generation system"
Borge-Diez, David, et Enrique Rosales-Asensio, dir. Energy System Resilience and Distributed Generation. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-67754-0.
Texte intégralBollen, Math, et Fainan Hassan. Integration of Distributed Generation in the Power System. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118029039.
Texte intégralBollen, Math H. J. Integration of distributed generation in the power system. Hoboken, N.J : Wiley-IEEE Press, 2011.
Trouver le texte intégralCoddington, Michael H. Updating interconnection screens for PV system integration. Golden, CO : National Renewable Energy Laboratory, 2012.
Trouver le texte intégralEla, Erik. Operating reserves and variable generation : A comprehensive review of current strategies, studies, and fundamental research on the impact that increased penetration of variable renewable generation has on power system operating reserves. Golden, Colo : National Renewable Energy Laboratory, 2011.
Trouver le texte intégralCarlos, Balda Juan, Oliva Alejandro Raul, Electric Power Research Institute, Central and South West Corporation. et University of Arkansas (Fayetteville campus). Energy Conversion Laboratory., dir. The impact of dispersed generation upon the quality of electric power : The Solar Park in the Ft. Davis distribution system. Palo Alto, CA : Electric Power Research Institute, 1997.
Trouver le texte intégralPeter, Crossley, Chowdhury S. P et Knovel (Firm), dir. Microgrids and active distribution networks. London : Institution of Engineering and Technology, 2009.
Trouver le texte intégralBrowne, Joshua Benjamin. A techno-economic and environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system. [New York, N.Y.?] : [publisher not identified], 2016.
Trouver le texte intégralM, Marwali, et Dai Min, dir. Integration of green and renewable energy in electric power systems. Hoboken, N.J : Wiley, 2010.
Trouver le texte intégralSchneider, Lambert, Martin Pehnt, Martin Cames, Corinna Fischer, Barbara Praetorius, Katja Schumacher et Jan-Peter Voß. Micro Cogeneration : Towards Decentralized Energy Systems. Springer, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Micro distributed generation system"
Zheng, Peng, Zeng Jiazhi, Zhang Ming et Zhao Jidong. « Micro-communication Element System ». Dans Parallel and Distributed Computing : Applications and Technologies, 424–28. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30501-9_87.
Texte intégralStrachan, N., H. Zerriffi et H. Dowlatabadi. « System Implications of Distributed Generation ». Dans International Series in Operations Research & ; Management Science, 39–75. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0495-5_3.
Texte intégralNagaoka, Naoto. « Cable Transient in Distributed Generation System ». Dans Cable System Transients, 351–90. Singapore : John Wiley & Sons, Singapore Pte. Ltd, 2015. http://dx.doi.org/10.1002/9781118702154.ch8.
Texte intégralMandi, Rajashekar P. « Solar PV System with Energy Storage and Diesel Generator ». Dans Handbook of Distributed Generation, 749–90. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51343-0_22.
Texte intégralShukla, Rishabh Dev, Ramesh K. Tripathi, Padmanabh Thakur et Ramesh Bansal. « Protection of Renewable Distributed Generation System ». Dans Power System Protection in Smart Grid Environment, 593–622. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2019. : CRC Press, 2019. http://dx.doi.org/10.1201/9780429401756-18.
Texte intégralPriyadarshi, Neeraj, Kavita Yadav, Vinod Kumar et Monika Vardia. « An Experimental Study on Zeta Buck–Boost Converter for Application in PV System ». Dans Handbook of Distributed Generation, 393–406. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51343-0_13.
Texte intégralCesare, Stefano, et Gianfranco Sechi. « Next Generation Gravity Mission ». Dans Distributed Space Missions for Earth System Monitoring, 575–98. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4541-8_20.
Texte intégralMithulananthan, Nadarajah, Duong Quoc Hung et Kwang Y. Lee. « Distribution System Modelling ». Dans Intelligent Network Integration of Distributed Renewable Generation, 21–28. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49271-1_2.
Texte intégralSandmaier, H. « Piezoresistive Pressure Sensors Representing the 2nd Generation Avoid the Physical Limits Based on Conventional Designs ». Dans Micro System Technologies 90, 581–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_82.
Texte intégralYoshida, Eiichi, Satoshi Murata, Shigeru Kokaji, Kohji Tomita et Haruhisa Kurokawa. « Micro Self-reconfigurable Robotic System using Shape Memory Alloy ». Dans Distributed Autonomous Robotic Systems 4, 145–54. Tokyo : Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-67919-6_14.
Texte intégralActes de conférences sur le sujet "Micro distributed generation system"
El-Shahat, Adel, Babajide Adepitan, Walter Brannen et Samuel Trent. « Micro-Scale Desalination System Utilizing Distributed Generation Alternative Sources ». Dans 2021 9th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2021. http://dx.doi.org/10.1109/irsec53969.2021.9741160.
Texte intégralAlhashem, Mohammad, Salem Al-Agtash, Mohanad Batarseh et Zakariya Dalalah. « Scheduling Approach for Connected Micro-Grid System ». Dans 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2018. http://dx.doi.org/10.1109/pedg.2018.8447744.
Texte intégralNikkhajoei, H., M. Saeedifard et R. Iravani. « A three-level converter based micro-turbine distributed generation system ». Dans 2006 IEEE Power Engineering Society General Meeting. IEEE, 2006. http://dx.doi.org/10.1109/pes.2006.1709541.
Texte intégralHe, Yufei, Ming-Hao Wang, Zhao Xu et Yi He. « Advanced Intelligent Micro Inverter Control in the Distributed Solar Generation System ». Dans 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019. http://dx.doi.org/10.1109/ei247390.2019.9061703.
Texte intégralJingding, Ren, Che Yanbo et Zhao Lihua. « Discussion on monitoring scheme of distributed generation and micro-grid system ». Dans Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982926.
Texte intégralZeineldin, H., E. El-saadany et M. A. Salama. « Distributed Generation Micro-Grid Operation : Control and Protection ». Dans 2006 Power Systems Conference : Advanced Metering, Protection, Control, Communication, and Distributed Resources. IEEE, 2006. http://dx.doi.org/10.1109/psamp.2006.285379.
Texte intégralQingping Wang, Changnian Lin, Xuanhuai Yang et Jialu Liu. « Scheme of intelligent community based on distributed generation and micro-grid ». Dans 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666653.
Texte intégralZhu, Lin, Huaiguang Gu, Shujing Li, Mingcheng Yang, Qi Liu, Chen Jia et Luyu Yang. « A Micro Switch Based Modeling Method for LCC-HVDC System ». Dans 2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2023. http://dx.doi.org/10.1109/pedg56097.2023.10215240.
Texte intégralZhou, Liang, Ming Ding et Rui Bi. « Optimization of design and application of micro-grid energy management system data acquisition system ». Dans 2010 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2010. http://dx.doi.org/10.1109/pedg.2010.5545845.
Texte intégralRosli, N., M. F. M. Elias et N. A. Rahim. « Design and Analysis of a Multilevel Converter for Micro Distributed Generation System ». Dans 2018 International Conference on Intelligent and Advanced System (ICIAS). IEEE, 2018. http://dx.doi.org/10.1109/icias.2018.8540594.
Texte intégralRapports d'organisations sur le sujet "Micro distributed generation system"
LaCommare, Kristina Hamachi, Jennifer L. Edwards et Chris Marnay. Distributed generation capabilities of the national energy modeling system. Office of Scientific and Technical Information (OSTI), janvier 2003. http://dx.doi.org/10.2172/816363.
Texte intégralShirley, W., R. Cowart, R. Sedano, F. Weston, C. Harrington et D. Moskovitz. State Electricity Regulatory Policy and Distributed Resources : Distribution System Cost Methodologies for Distributed Generation. Office of Scientific and Technical Information (OSTI), octobre 2002. http://dx.doi.org/10.2172/15001123.
Texte intégralFaress Rahman et Nguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), janvier 2004. http://dx.doi.org/10.2172/897763.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), mars 2002. http://dx.doi.org/10.2172/897857.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), juin 2002. http://dx.doi.org/10.2172/897858.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), septembre 2002. http://dx.doi.org/10.2172/897859.
Texte intégralNguyen Minh et Faress Rahman. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), décembre 2002. http://dx.doi.org/10.2172/897860.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), juillet 2004. http://dx.doi.org/10.2172/897861.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), janvier 2005. http://dx.doi.org/10.2172/897862.
Texte intégralNguyen Minh. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation. Office of Scientific and Technical Information (OSTI), juillet 2005. http://dx.doi.org/10.2172/897863.
Texte intégral