Littérature scientifique sur le sujet « Microbunch »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Microbunch ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Microbunch"
Adli, Erik, et Patric Muggli. « Proton-Beam-Driven Plasma Acceleration ». Reviews of Accelerator Science and Technology 09 (janvier 2016) : 85–104. http://dx.doi.org/10.1142/s1793626816300048.
Texte intégralSchächter, Levi, et Wayne D. Kimura. « Quasi-monoenergetic ultrashort microbunch electron source ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 875 (décembre 2017) : 80–86. http://dx.doi.org/10.1016/j.nima.2017.08.041.
Texte intégralShields, W., R. Bartolini, G. Boorman, P. Karataev, A. Lyapin, J. Puntree et G. Rehm. « Microbunch Instability Observations from a THz Detector at Diamond Light Source ». Journal of Physics : Conference Series 357 (3 mai 2012) : 012037. http://dx.doi.org/10.1088/1742-6596/357/1/012037.
Texte intégralHuang, Z., et T. Shaftan. « Impact of beam energy modulation on rf zero-phasing microbunch measurements ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 528, no 1-2 (août 2004) : 345–49. http://dx.doi.org/10.1016/j.nima.2004.04.065.
Texte intégralCarlsten, Bruce E., Kip A. Bishofberger, Leanne D. Duffy, John W. Lewellen, Quinn R. Marksteiner et Nikolai A. Yampolsky. « Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability ». IEEE Transactions on Nuclear Science 63, no 2 (avril 2016) : 921–29. http://dx.doi.org/10.1109/tns.2015.2498619.
Texte intégralPetzoldt, J., K. E. Roemer, W. Enghardt, F. Fiedler, C. Golnik, F. Hueso-González, S. Helmbrecht et al. « Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility ». Physics in Medicine and Biology 61, no 6 (4 mars 2016) : 2432–56. http://dx.doi.org/10.1088/0031-9155/61/6/2432.
Texte intégralKaufmann, Pierre, et Jean-Pierre Raulin. « Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves ? » Physics of Plasmas 13, no 7 (juillet 2006) : 070701. http://dx.doi.org/10.1063/1.2244526.
Texte intégralCarlsten, Bruce E., Petr M. Anisimov, Cris W. Barnes, Quinn R. Marksteiner, River R. Robles et Nikolai Yampolsky. « High-Brightness Beam Technology Development for a Future Dynamic Mesoscale Materials Science Capability ». Instruments 3, no 4 (29 septembre 2019) : 52. http://dx.doi.org/10.3390/instruments3040052.
Texte intégralSeo, Yoonho, et Wonhyung Lee. « Stimulated Superradiance Emitted from Periodic Microbunches of Electrons ». Japanese Journal of Applied Physics 49, no 11 (22 novembre 2010) : 116402. http://dx.doi.org/10.1143/jjap.49.116402.
Texte intégralLumpkin, A. H. « Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics ». International Journal of Modern Physics A 34, no 34 (10 décembre 2019) : 1943013. http://dx.doi.org/10.1142/s0217751x19430139.
Texte intégralThèses sur le sujet "Microbunch"
KOSTARA, ELEFTHERIA. « Full-beam PET monitoring in hadron therapy and related coincidence logic ». Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1013502.
Texte intégralHadron therapy is a widely employed technique that uses protons and heavy ions to treat cancer. It has the potential of delivering highly conformal dose distributions to the tumor volume while sparing the surrounding healthy tissue, thanks to the dose distribution characterized by the Bragg peak at the end of charged particles range. In order to exploit the full potential of hadron therapy, an in vivo monitoring technique is desirable in order to reduce the uncertainties and therefore the treatment safety margins. Positron emission tomography (PET) is considered one of the most promising in vivo non-invasive imaging techniques for monitoring the particle range in radiation treatments. One of the data acquisition methods is the so-called in-beam which is performed during irradiation at the treatment site. The problem of in-beam monitoring is that in-spill data are much noisier while inter-spill data for accelerators with high duty cycles, are much less due to the small number of acquired decays. During the spills, the noisy background is due to the presence of strong beam-induced radiation that increases the random coincidence rates. This background might originate from the decay of β+ emitters with half-lives in millisecond range and high endpoint energies, by γ-rays following nuclear reactions not related to β+ decay or by pair productions and neutrons. The noisy events cannot be separated from the usable decays of long-lived β+ emitters and cannot be corrected with standard random coincidence correction techniques because of the time-correlation of the beam-induced background with the ion beam microstructure. Until now, only two methods exist for identifying coincident events that occur during the microbunches in the spills. Both of them use information about the beam microstructure from external sources. In the first method, the RF signal from the accelerator is used externally and the data processing is done offline. In the second one, a fast particle detector placed in the beam path before the target is used and the process is triggered only when a particle arrives. With this thesis, the correlation between the beam microstructure and the RF of the synchrotron is confirmed by analyzing the events in the spills without the need of an external signal. An algorithm for the calculation of the period of the beam microstructure is developed. Small differences in the period between the spills impose the separate analysis for every spill. The period is calculated with 4 digits precision in nanosecond time scale, making a significant difference to the representation of the microbunch. In the end, the firmware related to the algorithm for the calculation of the period of the beam microstructure is developed using only the events in the spills. The simulation results show that it is possible the algorithm to be implemented in an FPGA and provide information about the period of the beam microstructure in real time. Moreover, a coincidence sorter is developed in order to provide real time coincidence detection. The simulation results for the two different architectures of the sorter that uses comparators with two and three inputs, are presented. The 3D spatial distribution and the 1D activity profiles of the coincidence events are constructed for inter-spill and in-spill data. The strong radiation background is visible in the reconstructed images, especially before the entrance surface of the phantom and at the end of the activity range with a tail. After filtering out the in-spill data by discarding the coincidence events that occur in a sub-interval of the microbunch, it is shown that the reconstructed image improves severely. In the 1D activity profile, one can observe that the number of coincidence events before the entrance surface of the phantom decreases significantly. This might happen because neutrons are discarded since they are detected a few ns later after the interaction of the beam with the nuclei. Results show that the signal to noise ratio (SNR), defined as the activity peak in the phantom divided by the background level, is improved by a factor of about 4.8 with respect to the in-spill signal. In the end, it is important to mention that this activity has been developed within the projects INSIDE and INFIERI (FP7-PEOPLE-2012-ITN project number 317446) funded by MIUR and EU respectively.
Sears, Christopher M. S. « Production, characterization and acceleration of optical microbunches / ». May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texte intégralChapitres de livres sur le sujet "Microbunch"
Huang, Z., et T. Shaftan. « Impact of beam energy modulation on rf zero-phasing microbunch measurements ». Dans Free Electron Lasers 2003, 345–49. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-444-51727-2.50079-1.
Texte intégralReiche, S., et J. B. Rosenzweig. « A Fast Method to Estimate the Gain of the Microbunch Instability in a Bunch Compressor ». Dans Free Electron Lasers 2002, II—51—II—52. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-444-51417-2.50157-7.
Texte intégralLumpkin, A. H., M. Erdmann, J. W. Lewellen, Y. C. Chae, R. J. Dejus, P. Den Hartog, Y. Li, S. V. Milton, D. W. Rule et G. Wiemerslage. « First observations of COTR due to a microbunched beam in the VUV at 157nm⋆⋆Work supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. » Dans Free Electron Lasers 2003, 194–98. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-444-51727-2.50047-x.
Texte intégralActes de conférences sur le sujet "Microbunch"
Schächter, Levi, Wayne D. Kimura et Ilan Ben-Zvi. « Ultrashort microbunch electron source ». Dans ADVANCED ACCELERATOR CONCEPTS 2016 : 16th Advanced Accelerator Concepts Workshop. Author(s), 2016. http://dx.doi.org/10.1063/1.4965670.
Texte intégralHe, P., Y. Liu, D. B. Cline, M. Babzien, J. C. Gallardo, K. P. Kusche, I. V. Pogorelsky et al. « STELLA experiment—microbunch diagnostic ». Dans The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58926.
Texte intégralStupakov, G. V. « Effect of centrifugal transverse wakefield for microbunch in bend ». Dans The sixteenth advanced international committee on future accelerators beam dynamics workshop on nonlinear and collective phenomena in beam physics. AIP, 1999. http://dx.doi.org/10.1063/1.58423.
Texte intégralAmatuni, A. Ts, et I. V. Pogorelsky. « Microbunch temporal diagnostic by Compton scattering in interfering laser beams ». Dans The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58878.
Texte intégralRule, D. W., R. B. Fiorito et W. D. Kimura. « The effect of detector bandwidth on microbunch length measurements made with coherent transition radiation ». Dans The eighth workshop on advanced accelerator concepts. AIP, 1999. http://dx.doi.org/10.1063/1.58877.
Texte intégralWatanabe, Takahiro. « Angle and Length Measurements of Microbunches ». Dans ADVANCED ACCELERATOR CONCEPTS : Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842644.
Texte intégralSears, Christopher M. S. « IFEL-Chicane Based Microbuncher at 800nm ». Dans ADVANCED ACCELERATOR CONCEPTS : Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842562.
Texte intégralLumpkin, A. H. « Applications with Intense OTR Images II : Microbunched Electron Beams ». Dans ADVANCED ACCELERATOR CONCEPTS : Eleventh Advanced Accelerator Concepts Workshop. AIP, 2004. http://dx.doi.org/10.1063/1.1842567.
Texte intégralGatti, Giancarlo, Alan Cook, James Rosenzweig et Rodion Tikhoplav. « Coherent cherenkov radiation as a temporal diagnostic for microbunched beams ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440961.
Texte intégralMuggli, P., E. Kallos, V. E. Yakimenko, M. Babzien, K. P. Kusche et W. D. Kimura. « Generation and characterization of microbunched beams with a wire mesh mask ». Dans 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440674.
Texte intégralRapports d'organisations sur le sujet "Microbunch"
Stupakov, G. Microbunch Instability Theory and Simulations. Office of Scientific and Technical Information (OSTI), janvier 2005. http://dx.doi.org/10.2172/839918.
Texte intégralDerbenev, Ya S., et V. D. Shiltsev. Transverse effects of microbunch radiative interaction. Office of Scientific and Technical Information (OSTI), juin 1996. http://dx.doi.org/10.2172/251656.
Texte intégralDerbenev, Y. Microbunch Emittance Growth Due to Radiative Interaction. Office of Scientific and Technical Information (OSTI), juin 2003. http://dx.doi.org/10.2172/813248.
Texte intégralStupakov, Gennady. Effect of Centrifugal Transverse Wakefield for Microbunch in Bend. Office of Scientific and Technical Information (OSTI), décembre 1998. http://dx.doi.org/10.2172/9982.
Texte intégralHuang, Zhirong. Impact of Beam Energy Modulation on rf Zero-Phasing Microbunch Measurements. Office of Scientific and Technical Information (OSTI), août 2003. http://dx.doi.org/10.2172/815284.
Texte intégralSears, C. IFEL-Chicane Based Microbuncher at 800nm. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/833065.
Texte intégralSears, Christopher M. S. Production, Characterization, and Acceleration of Optical Microbunches. Office of Scientific and Technical Information (OSTI), juin 2008. http://dx.doi.org/10.2172/933014.
Texte intégralBaxevanis, Panagiotis. 3D Theoretical and simulation tools for microbunched cooling. Office of Scientific and Technical Information (OSTI), septembre 2021. http://dx.doi.org/10.2172/1822340.
Texte intégral